Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2012_15_3_a1, author = {E. S. Baranovskiǐ}, title = {An inhomogeneous boundary value problem for the stationary equations of the {Jeffreys} model for the motion of a~viscoelastic medium}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {16--23}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a1/} }
TY - JOUR AU - E. S. Baranovskiǐ TI - An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a~viscoelastic medium JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2012 SP - 16 EP - 23 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a1/ LA - ru ID - SJIM_2012_15_3_a1 ER -
%0 Journal Article %A E. S. Baranovskiǐ %T An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a~viscoelastic medium %J Sibirskij žurnal industrialʹnoj matematiki %D 2012 %P 16-23 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a1/ %G ru %F SJIM_2012_15_3_a1
E. S. Baranovskiǐ. An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a~viscoelastic medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 16-23. http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a1/
[1] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl
[2] Reiner M., Reologiya, Fizmatgiz, M., 1965
[3] Vorotnikov D. A., “O suschestvovanii slabykh statsionarnykh reshenii kraevoi zadachi v modeli Dzheffrisa dvizheniya vyazkouprugoi sredy”, Izv. vuzov. Matematika, 2004, no. 9, 13–17 | MR
[4] Turganbaev E. M., “Nachalno-kraevye zadachi dlya uravnenii vyazkouprugoi zhidkosti tipa Oldroida”, Sib. mat. zhurn., 36:2 (1995), 444–458 | MR | Zbl
[5] Renardy M., “Existence of slow steady flows of viscoelastic fluids with differential constitutive equations”, Z. Angew. Math. Mech., 65:9 (1985), 449–451 | DOI | MR | Zbl
[6] Guillope C., Saut J. C., “Mathematical problems arising in differential models for viscoelastic fluids”, Math. Topics in Fluid Mech., Longman, Harlow, 1993, 64–93 | MR
[7] Goldshtein R. V., Gorodtsov V. A., Mekhanika sploshnykh sred, Ch. 1, Fizmatlit, M., 2000
[8] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[9] Lloyd N. G., Degree Theory, Univ. Press, Cambridge, 1978 | MR | Zbl