An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a~viscoelastic medium
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 16-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an inhomogeneous Dirichlet problem for the stationary equations of the motion of a viscoelastic medium of the Jeffreys type. We prove the solvability of this problem in a generalized (weak) formulation and establish the sequential weak closedness of the solution set.
Keywords: non-Newtonian fluid dynamics, Jeffreys model, viscoelastic medium, inhomogeneous boundary value problems, weak solution.
@article{SJIM_2012_15_3_a1,
     author = {E. S. Baranovskiǐ},
     title = {An inhomogeneous boundary value problem for the stationary equations of the {Jeffreys} model for the motion of a~viscoelastic medium},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {16--23},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a1/}
}
TY  - JOUR
AU  - E. S. Baranovskiǐ
TI  - An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a~viscoelastic medium
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 16
EP  - 23
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a1/
LA  - ru
ID  - SJIM_2012_15_3_a1
ER  - 
%0 Journal Article
%A E. S. Baranovskiǐ
%T An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a~viscoelastic medium
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 16-23
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a1/
%G ru
%F SJIM_2012_15_3_a1
E. S. Baranovskiǐ. An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a~viscoelastic medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 16-23. http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a1/

[1] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl

[2] Reiner M., Reologiya, Fizmatgiz, M., 1965

[3] Vorotnikov D. A., “O suschestvovanii slabykh statsionarnykh reshenii kraevoi zadachi v modeli Dzheffrisa dvizheniya vyazkouprugoi sredy”, Izv. vuzov. Matematika, 2004, no. 9, 13–17 | MR

[4] Turganbaev E. M., “Nachalno-kraevye zadachi dlya uravnenii vyazkouprugoi zhidkosti tipa Oldroida”, Sib. mat. zhurn., 36:2 (1995), 444–458 | MR | Zbl

[5] Renardy M., “Existence of slow steady flows of viscoelastic fluids with differential constitutive equations”, Z. Angew. Math. Mech., 65:9 (1985), 449–451 | DOI | MR | Zbl

[6] Guillope C., Saut J. C., “Mathematical problems arising in differential models for viscoelastic fluids”, Math. Topics in Fluid Mech., Longman, Harlow, 1993, 64–93 | MR

[7] Goldshtein R. V., Gorodtsov V. A., Mekhanika sploshnykh sred, Ch. 1, Fizmatlit, M., 2000

[8] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[9] Lloyd N. G., Degree Theory, Univ. Press, Cambridge, 1978 | MR | Zbl