Solution of differential equations with nonseparated multipoint and integral conditions
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a numerical method for solving systems of linear nonautonomous ordinary differential equations with nonseparated multipoint and integral conditions. The method is based on the operation of the convolution of the integral conditions into local ones, which allows us to reduce the solution of the original problem to the solution of a Cauchy problem for ordinary differential equations and for a system of algebraic linear equations. We prove the stability of the computational schemes. Many numerical experiments on specially constructed test problems with the use of the formulas and schemes for numerical solution are proposed in the article. The experimental results showed a sufficiently high efficiency of this approach.
Keywords: system of ordinary differential equations, nonseparated conditions, integral conditions, operation of successive shift.
Mots-clés : nonlocal multipoint conditions
@article{SJIM_2012_15_3_a0,
     author = {V. M. Abdullaev},
     title = {Solution of differential equations with nonseparated multipoint and integral conditions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a0/}
}
TY  - JOUR
AU  - V. M. Abdullaev
TI  - Solution of differential equations with nonseparated multipoint and integral conditions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 3
EP  - 15
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a0/
LA  - ru
ID  - SJIM_2012_15_3_a0
ER  - 
%0 Journal Article
%A V. M. Abdullaev
%T Solution of differential equations with nonseparated multipoint and integral conditions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 3-15
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a0/
%G ru
%F SJIM_2012_15_3_a0
V. M. Abdullaev. Solution of differential equations with nonseparated multipoint and integral conditions. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/SJIM_2012_15_3_a0/

[1] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shkola, M., 1995 | Zbl

[2] Pulkina L. S., “Nelokalnaya zadacha s integralnymi usloviyami dlya giperbolicheskogo uravneniya”, Differents. uravneniya, 40:7 (2004), 887–891 | MR

[3] Bouziani A., “On the solvability of parabolic and hyperbolic problems with a boundary integral condition”, Internat. J. Math. Sci., 31:4 (2002), 202–213 | DOI | MR

[4] Abramov A. A., Burago N. G. i dr., “Paket prikladnykh programm dlya resheniya lineinykh dvukhtochechnykh kraevykh zadach”, Soobscheniya po programmnomu obespecheniyu EVM, izd. VTs AN SSSR, M., 1981

[5] Aida-zade K. R., “O reshenii sistem differentsialnykh uravnenii s nelokalnymi usloviyami”, Vychisl. tekhnologii, 1:9 (2004), 11–25 | Zbl

[6] Ayda-zade K. R., Abdullaev V. M., “Numerical solution of optimal control problems with unseparated conditions on phase state”, Appl. Comput. Math., 4:2 (2005), 165–177 | MR

[7] Aida-zade K. R., Abdullaev V. M., “O zadache regulirovaniya protsessa nagreva”, Problemy upravleniya i informatiki (Kiev), 2011, no. 2, 33–45

[8] Abdullaev V. M., Aida-zade K. R., “Chislennye resheniya zadach optimalnogo upravleniya nagruzhennymi sosredotochennymi sistemami”, Zhurn. vychisl. matematiki i mat. fiziki, 46:9 (2006), 1566–1581 | MR

[9] Abdullaev V. M., Aida-zade K. R., “O chislennom reshenii nagruzhennykh sistem obyknovennykh differentsialnykh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 44:9 (2004), 1585–1595 | MR | Zbl

[10] Abdullaev V. M., “O primenenii metoda pryamykh dlya kraevoi zadachi s nelokalnymi usloviyami otnositelno nagruzhennogo parabolicheskogo uravneniya”, Izv. NAN Azerbaidzhana. Ser. FTMN, 28:2 (2008), 76–81 | MR

[11] Kamynin L. I., “Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviyami”, Zhurn. vychisl. matematiki i mat. fiziki, 4:6 (1964), 1006–1024 | MR | Zbl

[12] Kirilich V. M., “Zadacha s nerazdelennymi granichnymi usloviyami dlya giperbolicheskoi sistemy pervogo poryadka na pryamoi”, Vestn. Lvov. un-ta. Ser. mekh.-mat., 22, 1984, 90–94 | MR

[13] Samoilenko A. M., Laptinskii V. N., Kenzhebaev K. K., Konstruktivnye metody issledovaniya periodicheskikh i mnogotochechnykh kraevykh zadach, Kiev, 1999 | MR

[14] Kiguradze I. T., “Kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Sovr. problemy matematiki. Novye dostizheniya, 30, VINITI, M., 1987, 3–103 | MR | Zbl

[15] Bondarev A. N., Laptinskii V. N., “Mnogotochechnaya kraevaya zadacha dlya uravneniya Lyapunova v sluchae silnogo vyrozhdeniya kraevykh uslovii”, Differents. uravneniya, 47:6 (2011), 776–784 | MR | Zbl