Algorithms for computing complete elliptic integrals and some related functions
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give new algorithms for computing the complete elliptic integrals of the first and second kinds and some related functions. The algorithms are constructed on the base of rapidly converging power series; the fixed sign of the series guarantees their good conditionality (stability with respect to rounding errors). The algorithms turned out to be flexible and easily adaptable to any specific demands of computing practice.
Keywords: complete elliptic integrals of the first and second kinds, toroidal functions, conical functions.
@article{SJIM_2012_15_2_a2,
     author = {V. N. Belykh},
     title = {Algorithms for computing complete elliptic integrals and some related functions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a2/}
}
TY  - JOUR
AU  - V. N. Belykh
TI  - Algorithms for computing complete elliptic integrals and some related functions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 21
EP  - 32
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a2/
LA  - ru
ID  - SJIM_2012_15_2_a2
ER  - 
%0 Journal Article
%A V. N. Belykh
%T Algorithms for computing complete elliptic integrals and some related functions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 21-32
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a2/
%G ru
%F SJIM_2012_15_2_a2
V. N. Belykh. Algorithms for computing complete elliptic integrals and some related functions. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 21-32. http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a2/

[1] Babenko K. I., “O yavlenii nasyscheniya v chislennom analize”, Dokl. AN SSSR, 241:3 (1978), 505–508 | MR | Zbl

[2] Babenko K. I., Osnovy chislennogo analiza, RDKh, M.–Izhevsk, 2002

[3] Belykh V. N., “O svoistvakh nailuchshikh priblizhenii $C^\infty$-gladkikh funktsii na otrezke veschestvennoi osi (k fenomenu nenasyschaemosti chislennykh metodov)”, Sib. mat. zhurn., 46:3 (2005), 483–499 | MR | Zbl

[4] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, v. 2, Fizmatgiz, M., 1963

[5] Gobson E. B., Teoriya sfericheskikh i ellipsoidalnykh funktsii, Izd-vo inostr. lit., M., 1952

[6] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatgiz, M., 1962

[7] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M.–L., 1963 | MR | Zbl

[8] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973

[10] Yanke E., Emde F., Lësh F., Spetsialnye funktsii, Nauka, M., 1977

[11] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[12] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980

[13] Aksënov E. P., Spetsialnye funktsii v nebesnoi mekhanike, Nauka, M., 1986 | MR | Zbl

[14] Carmack L. A., “Numerical evaluation of a symmetric potential function”, Math. Comput., 67:222 (2011), 641–646 | MR

[15] Fukushima T., “Precise and fast computation of the general complete elliptic integral of the second kind”, Math. Comput., 80:275 (2011), 1725–1743 | DOI | MR | Zbl

[16] Belykh V. N., “K probleme obtekaniya osesimmetrichnykh tel bolshogo udlineniya potokom idealnoi neszhimaemoi zhidkosti”, Prikl. mekhanika i tekhn. fizika, 47:5 (2006), 56–67 | MR | Zbl

[17] Belykh V. N., “Vneshnyaya osesimmetrichnaya zadacha Neimana dlya uravneniya Laplasa: nenasyschaemye metody chislennogo resheniya”, Dokl. AN, 417:4 (2007), 442–445 | MR | Zbl