On the solution of an inverse problem for a~multidimensional parabolic equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 139-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the inverse problem for a multidimensional parabolic equation with an unknown coefficient at the differential operator of second order with respect to a chosen variable with the Cauchy data. The initial condition has a special form and is given in the form of the scalar product of two vector-valued functions that depend on different variables. We obtain sufficient conditions for the existence and uniqueness of the solution to an auxiliary direct problem and the initial inverse problem. We use the weak approximation method for the proof.
Keywords: inverse problem, approximation, weak approximation method, theorem of existence and uniqueness, partial differential equations
Mots-clés : parabolic equation.
@article{SJIM_2012_15_2_a13,
     author = {I. V. Frolenkov and G. V. Romanenko},
     title = {On the solution of an inverse problem for a~multidimensional parabolic equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {139--146},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a13/}
}
TY  - JOUR
AU  - I. V. Frolenkov
AU  - G. V. Romanenko
TI  - On the solution of an inverse problem for a~multidimensional parabolic equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 139
EP  - 146
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a13/
LA  - ru
ID  - SJIM_2012_15_2_a13
ER  - 
%0 Journal Article
%A I. V. Frolenkov
%A G. V. Romanenko
%T On the solution of an inverse problem for a~multidimensional parabolic equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 139-146
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a13/
%G ru
%F SJIM_2012_15_2_a13
I. V. Frolenkov; G. V. Romanenko. On the solution of an inverse problem for a~multidimensional parabolic equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 139-146. http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a13/

[1] Anikonov Yu. E., “O metodakh issledovaniya mnogomernykh obratnykh zadach dlya evolyutsionnykh uravnenii”, Dokl. AN, 331:4 (1993), 409–412 | MR | Zbl

[2] Belov Yu. Ya., Frolenkov I. V., “Nekotorye zadachi identifikatsii koeffitsientov polulineinykh parabolicheskikh uravnenii”, Dokl. AN, 404:5 (2005), 583–585 | MR | Zbl

[3] Frolenkov I. V., Kriger E. N., “O zadache identifikatsii funktsii istochnika spetsialnogo vida v dvumernom parabolicheskom uravnenii”, J. Siberian Federal Univ. Mathematics and Physics, 3:4 (2010), 556–564

[4] Belov Yu. Ya., Kantor S. A., Metod slaboi approksimatsii, izd. KrasGU, Krasnoyarsk, 1999

[5] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967 | Zbl

[6] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, N.Y., 2000 | MR | Zbl

[7] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Uchebnik dlya studentov vuzov, Sibirskoe nauch. izd-vo, Novosibirsk, 2009