An iterative method for finding solutions to problems of heat conduction and diffusion of particles with discontinuous coefficients of the differential operator of the problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 128-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an iterative method for the implementation of highly accurate approximate piecewise smooth solutions to practical problems of heat transfer, diffusion of elementary particles (in particular, neutrons in a nuclear reactor) in multilayer constructions. We create a practical algorithm basing on two theorems.
Keywords: problem with elliptic operator, discontinuous coefficients, piecewise-smooth basis functions, rapidly convergent series, minimization of a quadratic functional.
@article{SJIM_2012_15_2_a12,
     author = {V. V. Smelov},
     title = {An iterative method for finding solutions to problems of heat conduction and diffusion of particles with discontinuous coefficients of the differential operator of the problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {128--138},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a12/}
}
TY  - JOUR
AU  - V. V. Smelov
TI  - An iterative method for finding solutions to problems of heat conduction and diffusion of particles with discontinuous coefficients of the differential operator of the problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 128
EP  - 138
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a12/
LA  - ru
ID  - SJIM_2012_15_2_a12
ER  - 
%0 Journal Article
%A V. V. Smelov
%T An iterative method for finding solutions to problems of heat conduction and diffusion of particles with discontinuous coefficients of the differential operator of the problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 128-138
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a12/
%G ru
%F SJIM_2012_15_2_a12
V. V. Smelov. An iterative method for finding solutions to problems of heat conduction and diffusion of particles with discontinuous coefficients of the differential operator of the problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 128-138. http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a12/

[1] Smelov V. V., Zadachi Shturma–Liuvillya i razlozheniya funktsii v bystroskhodyaschiesya ryady, Izd-vo SO RAN, Novosibirsk, 2000

[2] Smelov V. V., “O predstavlenii kusochno-gladkikh funktsii bystroskhodyaschimisya trigonometricheskimi ryadami”, Sib. zhurn. vychisl. matematiki, 2:4 (1999), 385–394 | Zbl

[3] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR | Zbl

[4] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[5] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[6] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Gostekhizdat, M.–L., 1947

[7] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[8] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[9] Glesston S., Edlund M., Osnovy teorii yadernykh reaktorov, Izd-vo inostr. lit., M., 1954

[10] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[11] Smelov V. V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978 | MR