Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2012_15_2_a12, author = {V. V. Smelov}, title = {An iterative method for finding solutions to problems of heat conduction and diffusion of particles with discontinuous coefficients of the differential operator of the problem}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {128--138}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a12/} }
TY - JOUR AU - V. V. Smelov TI - An iterative method for finding solutions to problems of heat conduction and diffusion of particles with discontinuous coefficients of the differential operator of the problem JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2012 SP - 128 EP - 138 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a12/ LA - ru ID - SJIM_2012_15_2_a12 ER -
%0 Journal Article %A V. V. Smelov %T An iterative method for finding solutions to problems of heat conduction and diffusion of particles with discontinuous coefficients of the differential operator of the problem %J Sibirskij žurnal industrialʹnoj matematiki %D 2012 %P 128-138 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a12/ %G ru %F SJIM_2012_15_2_a12
V. V. Smelov. An iterative method for finding solutions to problems of heat conduction and diffusion of particles with discontinuous coefficients of the differential operator of the problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 128-138. http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a12/
[1] Smelov V. V., Zadachi Shturma–Liuvillya i razlozheniya funktsii v bystroskhodyaschiesya ryady, Izd-vo SO RAN, Novosibirsk, 2000
[2] Smelov V. V., “O predstavlenii kusochno-gladkikh funktsii bystroskhodyaschimisya trigonometricheskimi ryadami”, Sib. zhurn. vychisl. matematiki, 2:4 (1999), 385–394 | Zbl
[3] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR | Zbl
[4] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[5] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[6] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Gostekhizdat, M.–L., 1947
[7] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[8] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR
[9] Glesston S., Edlund M., Osnovy teorii yadernykh reaktorov, Izd-vo inostr. lit., M., 1954
[10] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR
[11] Smelov V. V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978 | MR