On the statements and solvability of the problems on the contact of two plates containing rigid inclusions
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 107-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider problems with an unknown boundary about the contact of two elastic plates situated at an angle to each other. Each of the plates contains a rigid inclusion. The lower plate is deformed in its plane, and the upper plate, in the vertical direction. We establish the solvability and the uniqueness of the solutions to the problems. Assuming sufficient smoothness of the solution for various cases of the location of the rigid inclusions, we obtain a differential statement of the problem equivalent to the variational statement. The equilibrium equations of plates are fulfilled in nonsmooth domains, and the boundary conditions have the form of equalities and inequalities. We consider the limit case corresponding to the increase of the rigidity parameter of the lower plate to infinity.
Keywords: variational inequality, rigid inclusion Kirchhoff–Love plate, contact problem.
@article{SJIM_2012_15_2_a10,
     author = {T. A. Rotanova},
     title = {On the statements and solvability of the problems on the contact of two plates containing rigid inclusions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {107--118},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a10/}
}
TY  - JOUR
AU  - T. A. Rotanova
TI  - On the statements and solvability of the problems on the contact of two plates containing rigid inclusions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 107
EP  - 118
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a10/
LA  - ru
ID  - SJIM_2012_15_2_a10
ER  - 
%0 Journal Article
%A T. A. Rotanova
%T On the statements and solvability of the problems on the contact of two plates containing rigid inclusions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 107-118
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a10/
%G ru
%F SJIM_2012_15_2_a10
T. A. Rotanova. On the statements and solvability of the problems on the contact of two plates containing rigid inclusions. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 107-118. http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a10/

[1] Alekseev G. V., Khludnev A. M., “Treschina v uprugom tele, vykhodyaschaya na granitsu pod nulevym uglom”, Vestn. NGU, 9:2 (2009), 15–29 | Zbl

[2] Loigering G., Khludnev A. M., “O ravnovesii uprugikh tel, soderzhaschikh zhestkie vklyucheniya”, Dokl. AN, 430:1 (2010), 47–50 | MR

[3] Khludnev A. M., “Zadacha o treschine na granitsezhestkogo vklyucheniya v uprugoi plastine”, Izvestiya RAN. MTT, 2010, no. 5, 98–110

[4] Khludnev A. M., Novotny A. A., Sokolowski J., Zochowski A., “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mechanics and Physics of Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl

[5] Volmir A. S., Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972 | MR

[6] Khludnev A. M., “Ob odnostoronnem kontakte dvukh plastin, raspolozhennykh pod uglom drug k drugu”, Prikl. mekhanika i tekhn. fizika, 49:4 (2008), 553–567 | MR

[7] Rotanova T. A., “Zadacha ob odnostoronnem kontakte dvukh plastin, odna iz kotorykh soderzhit zhestkoe vklyuchenie”, Vestn. NGU. Matematika, mekhanika, informatika, 11:1 (2011), 87–98

[8] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | MR | Zbl

[9] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU, 9:4 (2009), 51–64 | MR

[10] Temam R., Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl

[11] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmat, M., 2010

[12] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser Verl., Basel–Boston–Berlin, 1997 | MR | Zbl

[13] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[14] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman, Boston–London–Melbourne, 1985 | MR | Zbl