Stability estimates for the solution in the problem of determining the kernel of the viscoelasticity equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 86-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the integrodifferential equation of 2-dimensional viscoelasticity we study the problem of determining the spatial part of the kernel of the integral part of the equation on assuming that the unknown function is supported on some compact region $\Omega$. As data required for solving this inverse problem, on the boundary of $\Omega$ we specify the traces of the solution to the direct Cauchy problem and its normal derivative on some finite interval of time. A significant circumstance in the statement of this problem is that the solution to the direct Cauchy problem corresponds to zero initial data and time impulsive force localized on a fixed straight line disjoint from $\Omega$. The main result of this article is a Lipschitz estimate for the conditional stability of the solution to this inverse problem.
Keywords: viscoelasticity, inverse problem, stability, uniqueness.
@article{SJIM_2012_15_1_a8,
     author = {V. G. Romanov},
     title = {Stability estimates for the solution in the problem of determining the kernel of the viscoelasticity equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {86--98},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a8/}
}
TY  - JOUR
AU  - V. G. Romanov
TI  - Stability estimates for the solution in the problem of determining the kernel of the viscoelasticity equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 86
EP  - 98
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a8/
LA  - ru
ID  - SJIM_2012_15_1_a8
ER  - 
%0 Journal Article
%A V. G. Romanov
%T Stability estimates for the solution in the problem of determining the kernel of the viscoelasticity equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 86-98
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a8/
%G ru
%F SJIM_2012_15_1_a8
V. G. Romanov. Stability estimates for the solution in the problem of determining the kernel of the viscoelasticity equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 86-98. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a8/

[1] Romanov V. G., Ustoichivost v obratnykh zadachakh, Nauch. mir, M., 2005

[2] Lorenzi A., Messina F., Romanov V. G., “Recovering a Lamé kernel in a viscoelastic system”, Appl. Anal., 86:11 (2007), 1375–1395 | DOI | Zbl

[3] Romanov V. G., Yamamoto M., “Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement”, Appl. Anal., 89:3 (2010), 377–390 | DOI | Zbl

[4] Lorenzi A., Romanov V. G., “Recovering two Lamé kernels in a viscoelastic system”, Inverse Problems and Imaging, 5:2 (2011), 431–464 | DOI | Zbl

[5] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979

[6] Romanov V. G., “Otsenki resheniya odnogo differentsialnogo neravenstva”, Sib. mat. zhurn., 47:3 (2006), 626–635 | MR | Zbl

[7] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[8] Romanov V. G., “Otsenka ustoichivosti v obratnoi zadache opredeleniya skorosti zvuka”, Sib. mat. zhurn., 40:6 (1999), 1323–1338 | MR | Zbl