A mathematical model of the motion of shear shock waves of nonzero curvature based on their evolution equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 77-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We study particular features of the appearance and motion of 1-dimensional shear shock waves of nonzero curvature basing on the corresponding evolution equation. Using numerous examples of boundary value problems for axisymmetric antiplane deformation, we demonstrate the efficiency of applying solutions to the evolution equation as the frontal asymptotics in the method of matched asymptotic expansions.
Keywords: nonlinear elasticity, incompressibility, shock wave
Mots-clés : perturbation method, evolution equation.
@article{SJIM_2012_15_1_a7,
     author = {V. E. Ragozina and Yu. E. Ivanova},
     title = {A mathematical model of the motion of shear shock waves of nonzero curvature based on their evolution equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a7/}
}
TY  - JOUR
AU  - V. E. Ragozina
AU  - Yu. E. Ivanova
TI  - A mathematical model of the motion of shear shock waves of nonzero curvature based on their evolution equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 77
EP  - 85
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a7/
LA  - ru
ID  - SJIM_2012_15_1_a7
ER  - 
%0 Journal Article
%A V. E. Ragozina
%A Yu. E. Ivanova
%T A mathematical model of the motion of shear shock waves of nonzero curvature based on their evolution equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 77-85
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a7/
%G ru
%F SJIM_2012_15_1_a7
V. E. Ragozina; Yu. E. Ivanova. A mathematical model of the motion of shear shock waves of nonzero curvature based on their evolution equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 77-85. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a7/