Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2012_15_1_a7, author = {V. E. Ragozina and Yu. E. Ivanova}, title = {A mathematical model of the motion of shear shock waves of nonzero curvature based on their evolution equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {77--85}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a7/} }
TY - JOUR AU - V. E. Ragozina AU - Yu. E. Ivanova TI - A mathematical model of the motion of shear shock waves of nonzero curvature based on their evolution equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2012 SP - 77 EP - 85 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a7/ LA - ru ID - SJIM_2012_15_1_a7 ER -
%0 Journal Article %A V. E. Ragozina %A Yu. E. Ivanova %T A mathematical model of the motion of shear shock waves of nonzero curvature based on their evolution equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2012 %P 77-85 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a7/ %G ru %F SJIM_2012_15_1_a7
V. E. Ragozina; Yu. E. Ivanova. A mathematical model of the motion of shear shock waves of nonzero curvature based on their evolution equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 77-85. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a7/
[1] Kulikovskii A. G., Sveshnikova E. I., Nelineinye volny v uprugikh sredakh, Mosk. litsei, M., 1998
[2] Burenin A. A., Chernyshov A. D., “Udarnye volny v izotropnom uprugom prostranstve”, Prikl. matematika i mekhanika, 42:4 (1978), 711–717
[3] Blend D., Nelineinaya dinamicheskaya teoriya uprugosti, Mir, M., 1972
[4] Koul Dzh., Metody vozmuschenii v prikladnoi matematike, Mir, M., 1972
[5] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977
[6] Burenin A. A., Rossikhin Yu. A., “K resheniyu odnomernoi zadachi nelineinoi dinamicheskoi teorii uprugosti so strukturnoi udarnoi volnoi”, Prikl. mekhanika, 26:1 (1990), 103–108 | Zbl
[7] Ivanova Yu. E., Ragozina V. E., “Ob udarnykh osesimmetricheskikh dvizheniyakh neszhimaemoi uprugoi sredy pri udarnykh vozdeistviyakh”, Prikl. mekhanika i i tekhn. fizika, 47:6 (2006), 144–151 | Zbl
[8] Burenin A. A., Ragozina V. E., Ivanova Yu. E., “Evolyutsionnoe uravnenie dlya volnovykh protsessov formoizmeneniya”, Izvestiya SGU. Ser. Matematika. Mekhanika. Informatika, 9:4, ch. 2 (2009), 14–24
[9] Pelinovskii Yu. N., Fridman V. E., Engelbrekht Yu. K., Nelineinye evolyutsionnye uravneniya, Valgus, Tallinn, 1984
[10] Ragozina V. E., Ivanova Yu. E., “Ob evolyutsionnykh uravneniyakh zadach udarnogo deformirovaniya s ploskimi poverkhnostyami razryvov”, Vychisl. mekhanika sploshnykh sred, 2:3 (2009), 82–95
[11] Bykovtsev G. I., Ivlev D. D., Teoriya plastichnosti, Dalnauka, Vladivostok, 1998
[12] Tomas T., Plasticheskoe techenie i razrushenie v tverdykh telakh, Mir, M., 1964
[13] Burenin A. A., “Ob udarnom deformirovanii neszhimaemogo uprugogo polupostranstva”, Prikl. mekhanika, 21:5 (1985), 3–8 | Zbl
[14] Ragozina V. E., Voronin I. I., Vekovshinin E. L., “Ob ispolzovanii prifrontovoi asimptotiki v chislennykh resheniyakh dinamicheskikh zadach teorii uprugosti s udarnymi volnami”, Probl. estestvoznaniya i proizvodstva, 115, 1995, 25–27
[15] Burenin A. A., Zinovev P. V., “K probleme vydeleniya poverkhnostei razryvov v chislennykh metodakh dinamiki deformiruemykh sred”, Problemy mekhaniki, Sb. statei k 90-letiyu A. Yu. Ishlinskogo, M., 2003, 146–155