Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2012_15_1_a4, author = {L. I. Kononenko and E. P. Volokitin}, title = {Parameterization and qualitative analysis of a~singular system in a~mathematical model of catalytic oxidation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {44--52}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a4/} }
TY - JOUR AU - L. I. Kononenko AU - E. P. Volokitin TI - Parameterization and qualitative analysis of a~singular system in a~mathematical model of catalytic oxidation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2012 SP - 44 EP - 52 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a4/ LA - ru ID - SJIM_2012_15_1_a4 ER -
%0 Journal Article %A L. I. Kononenko %A E. P. Volokitin %T Parameterization and qualitative analysis of a~singular system in a~mathematical model of catalytic oxidation %J Sibirskij žurnal industrialʹnoj matematiki %D 2012 %P 44-52 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a4/ %G ru %F SJIM_2012_15_1_a4
L. I. Kononenko; E. P. Volokitin. Parameterization and qualitative analysis of a~singular system in a~mathematical model of catalytic oxidation. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 44-52. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a4/
[1] Boronin A. I., Nizovskii A. I., Elokhin V. I., Yablonskii G. S., Savchenko V. I., “Eksperimentalnoe obosnovanie mekhanizma reaktsii $\mathrm{CO}_2$ na iridii i ego chislennoe modelirovanie”, Tez. dokl. 4 Vsesoyuz. konf. po mekhanizmu kataliticheskikh reaktsii, Ch. 2, M., 1996, 196–200
[2] Gainova I. A., Fadeev S. I., Elokhin V. I., Boronin A. I., “Reaktsiya okisleniya $\mathrm{CO}$ na polikristallicheskoi folge iridiya”, Modelirovanie kinetiki poverkhnostnykh protsessov, Tr. Mezhdunar. konf. po vychislitelnoi matematike. Ch. 1, Novosibirsk, 2004, 449–454
[3] Kononenko L. I., Integralnye mnogoobraziya v matematicheskoi modeli reaktsii kataliticheskogo okisleniya, Preprint No 13, In-t matematiki SO AN SSSR, Novosibirsk, 1990, 43 pp.
[4] Kononenko L. I., “O gladkosti medlennoi poverkhnosti singulyarno vozmuschennykh sistem”, Sib. zhurn. industr. matematiki, 5:2(10) (2002), 109–125 | MR | Zbl
[5] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1963 | MR
[6] Vasileva A. V., Butuzov V. F., Singulyarno vozmuschennye uravneniya v kriticheskikh sluchayakh, Izd-vo MGU, M., 1978 | MR
[7] Goldshtein V. M., Sobolev V. A., Kachestvennyi analiz singulyarno vozmuschennykh sistem, Izd. In-ta matematiki SO AN SSSR, Novosibirsk, 1988
[8] Kononenko L. I., “Parametrizatsiya medlennoi krivoi v odnoi zadache khimicheskoi kinetiki”, Sib. zhurn. industr. matematiki, 13:3(43) (2010), 51–57 | MR | Zbl
[9] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Itogo nauki i trekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI, M., 1986, 5–218 | MR | Zbl
[10] Tikhonov A. N., “O zavisimosti reshenii differentsialnykh uravnenii ot malogo parametra”, Mat. sbornik, 22(64):2 (1948), 193–204 | MR | Zbl
[11] Tikhonov A. N., “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Mat. sbornik, 31(73):3 (1952), 575–586 | MR | Zbl
[12] Callot J.-L., Diener F., Diener M., “Le probléme de la ‘chasse an canard’ ”, C. R. Acad. Sci. Sér. 1, 286:22 (1978), 1059–1061 | MR
[13] Chumakov G. A., Chumakova N. A., “Relaxation oscillations in a kinetic model of catalytic hydrogen oxidation involving a chase on canards”, Chem. Engrg. J., 91:2–3 (2003), 151–158 | DOI
[14] Kononenko L. I., “Relaksatsii v singulyarno vozmuschennykh sistemakh na ploskosti”, Vestnik NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 45–50
[15] Krupa M., Shmolyan P., “Relaxation oscillations and canard explosion”, J. Differential Equations, 174 (2001), 312–368 | DOI | MR | Zbl
[16] Chen X., Yu P., Han M., Zhang W., “Canard solutions of two-dimensional singularly perturbed systems”, Chaos, Solitons and Fractals, 23 (2005), 915–927 | MR | Zbl
[17] Bobkova A. S., Kolesov A. Yu., Rozov N. Kh., “Problema “vyzhivaniya utok” v trekhmernykh singulyarno vozmuschennykh sistemakh s dvumya medlennymi peremennymi”, Mat. zametki, 71:6 (2002), 818–831 | MR | Zbl
[18] Sobolev V. A., Schepakina E. A., “Traektorii-utki v odnoi zadache teorii goreniya”, Differents. uravneniya, 32:9 (1996), 1175–1184 | MR | Zbl
[19] Sobolev V. A., Schepakina E. A., “Integralnye poverkhnosti so smenoi ustoichivosti i traektorii-utki”, Izv. RAEN. Ser. MMMIU, 1:3 (1997), 176–187
[20] Wechselberger M., “Canards”, Scholarpedia, 2:4 (2007), 1356 | DOI