An analog of Kamenkov's critical case for systems of ordinary differential equations with pulse action
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 22-33

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new approach to studying the stability of systems of nonlinear differential equations with pulse action in critical cases. This approach rests on Lyapunov functions. We obtain sufficient conditions for the asymptotic stability of critical equilibria in some case analogous to Kamenkov's critical case.
Keywords: stability in the sense of Lyapunov, Kamenkov's critical case, differential equations with pulse action, Lyapunov's direct method.
@article{SJIM_2012_15_1_a2,
     author = {A. I. Dvirnyǐ and V. I. Slyn'ko},
     title = {An analog of {Kamenkov's} critical case for systems of ordinary differential equations with pulse action},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {22--33},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a2/}
}
TY  - JOUR
AU  - A. I. Dvirnyǐ
AU  - V. I. Slyn'ko
TI  - An analog of Kamenkov's critical case for systems of ordinary differential equations with pulse action
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 22
EP  - 33
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a2/
LA  - ru
ID  - SJIM_2012_15_1_a2
ER  - 
%0 Journal Article
%A A. I. Dvirnyǐ
%A V. I. Slyn'ko
%T An analog of Kamenkov's critical case for systems of ordinary differential equations with pulse action
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 22-33
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a2/
%G ru
%F SJIM_2012_15_1_a2
A. I. Dvirnyǐ; V. I. Slyn'ko. An analog of Kamenkov's critical case for systems of ordinary differential equations with pulse action. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 22-33. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a2/