An analog of Kamenkov's critical case for systems of ordinary differential equations with pulse action
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 22-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new approach to studying the stability of systems of nonlinear differential equations with pulse action in critical cases. This approach rests on Lyapunov functions. We obtain sufficient conditions for the asymptotic stability of critical equilibria in some case analogous to Kamenkov's critical case.
Keywords: stability in the sense of Lyapunov, Kamenkov's critical case, differential equations with pulse action, Lyapunov's direct method.
@article{SJIM_2012_15_1_a2,
     author = {A. I. Dvirnyǐ and V. I. Slyn'ko},
     title = {An analog of {Kamenkov's} critical case for systems of ordinary differential equations with pulse action},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {22--33},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a2/}
}
TY  - JOUR
AU  - A. I. Dvirnyǐ
AU  - V. I. Slyn'ko
TI  - An analog of Kamenkov's critical case for systems of ordinary differential equations with pulse action
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 22
EP  - 33
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a2/
LA  - ru
ID  - SJIM_2012_15_1_a2
ER  - 
%0 Journal Article
%A A. I. Dvirnyǐ
%A V. I. Slyn'ko
%T An analog of Kamenkov's critical case for systems of ordinary differential equations with pulse action
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 22-33
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a2/
%G ru
%F SJIM_2012_15_1_a2
A. I. Dvirnyǐ; V. I. Slyn'ko. An analog of Kamenkov's critical case for systems of ordinary differential equations with pulse action. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 22-33. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a2/

[1] Smith R., Impulsive Differential Equations with Applications to Self-Cycling Fermentation URL: http://diggitalcommons.mcmaster.ca/opendissertation/1526/

[2] Larin V. B., Upravlenie shagayuschimi apparatami, Nauk. dumka, Kiev, 1980

[3] Slynko V. I., Ustoichivost dvizheniya mekhanicheskikh sistem: gibridnye modeli, Avtoref. dis. d-ra fiz.-mat. nauk, Kiev, 2009

[4] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950 | Zbl

[5] Khazin L. G., Shnol E. E., Ustoichivost kriticheskikh polozhenii ravnovesiya, Izd-vo NTsBI AN SSSR, Puschino, 1985 | MR

[6] Chernikova O. S., “Printsip svedeniya dlya sistem differentsialnykh uravnenii s impulsnym vozdeistviem”, Ukr. mat. zhurn., 34:6 (1982), 601–607 | MR

[7] Perestyuk M. O., Chernikova O. S., “Deyaki suchasni aspekti teorii diferentsialnikh rivnyan z impulsnoyu dieyu”, Ukr. mat. zhurn., 60:1 (2008), 81–94 | MR | Zbl

[8] Samoilenko A. M., Perestyuk N. A., Differentsialnye uravneniya s impulsnym vozdeistviem, Vischa shkola, Kiev, 1987

[9] Lakshmikantham V., Bainov D. D., Simeonov P. S., Theory of Impulsive Differential Equations, World Sci., Singapore, 1989 | MR | Zbl

[10] Ignat'ev A. O., Ignat'ev O. A., Soliman A. A., “Asymptotic stability and instability of the solutions of systems with impulse action”, Math. Notes, 80:4 (2006), 491–499 | DOI | MR | Zbl

[11] Gladilina R. I., Ignat'ev A. O., “On the stability of periodic impulsive systems”, Math. Notes, 76:1 (2004), 41–47 | DOI | MR | Zbl

[12] Kamenkov G. V., Izbrannye trudy, v. 1, 2, Nauka, M., 1971 | MR | Zbl

[13] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966 | MR | Zbl

[14] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 7–140 | MR | Zbl

[15] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[16] Khazin L. G., Shnol E. E., “Ob ustoichivosti polozhenii ravnovesiya v kriticheskikh sluchayakh i sluchayakh, blizkikh k kriticheskim”, Prikl. matematika i mekhanika, 45:4 (1981), 595–604 | MR | Zbl

[17] Liu X., Williams D., “Stability analisis and applications to large scale impulsive systems: a new approach”, Canad. Appl. Math. Quarter., 3:4 (1985), 419–444 | MR

[18] Slynko V. I., “Lineinye matrichnye neravenstva i ustoichivost dvizheniya impulsnykh sistem”, Dop. NAN Ukraini, 2008, no. 4, 68–71 | MR

[19] Denisenko V. S., “Ustoichivost nechetkikh impulsnykh sistem Takagi–Sugeno: metod lineinykh matrichnykh neravenstv”, Dop. NAN Ukraini, 2008, no. 11, 66–73 | MR

[20] Denisenko V. S., Slynko V. I., “Impulsnaya stabilizatsiya mekhanicheskikh sistem dlya modelei Takagi–Sugeno”, Prikl. mekhanika, 49:10 (2009), 115–130 | MR