On estimating the error of an approximate solution to an overdetermined inverse problem of thermodiagnostics
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 145-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a generalized projection regularization method, we solve an overdetermined inverse boundary value problem for the heat equation and obtain some estimates accurate in order for the error of this solution.
Keywords: unbounded operator, Hilbert space, projection regularization operator, error estimates, approximate solutions.
@article{SJIM_2012_15_1_a14,
     author = {V. P. Tanana and I. A. Gaǐnova and A. I. Sidikova},
     title = {On estimating the error of an approximate solution to an overdetermined inverse problem of thermodiagnostics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a14/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - I. A. Gaǐnova
AU  - A. I. Sidikova
TI  - On estimating the error of an approximate solution to an overdetermined inverse problem of thermodiagnostics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 145
EP  - 154
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a14/
LA  - ru
ID  - SJIM_2012_15_1_a14
ER  - 
%0 Journal Article
%A V. P. Tanana
%A I. A. Gaǐnova
%A A. I. Sidikova
%T On estimating the error of an approximate solution to an overdetermined inverse problem of thermodiagnostics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 145-154
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a14/
%G ru
%F SJIM_2012_15_1_a14
V. P. Tanana; I. A. Gaǐnova; A. I. Sidikova. On estimating the error of an approximate solution to an overdetermined inverse problem of thermodiagnostics. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 145-154. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a14/

[1] Isakov G. N., Kuzin A. Ya., Savelev V. N., Ermolaev F. V., “Opredelenie kharakteristik tonkosloinykh teplozaschitnykh pokrytii iz resheniya obratnykh zadach teplo- i massoperenosa”, Fizika goreniya i vzryva, 39:5 (2003), 86–96

[2] Tanana V. P., “Ob optimalnom po poryadku metode resheniya odnoi obratnoi zadachi dlya parabolicheskogo uravneniya”, Dokl. RAN, 407:3 (2006), 316–318 | MR

[3] Tanana V. P., Sidikova A. I., “Ob optimalnosti po poryadku odnogo metoda vychisleniya znachenii neogranichennogo operatora i ego prilozheniya”, Sib. zhurn. industr. matematiki, 12:3 (2009), 130–140 | MR | Zbl

[4] Tanana V. P., Sidikova A. I., “O garantirovannoi otsenke tochnosti priblizhennogo resheniya odnoi zadachi teplovoi diagnostiki”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 238–252

[5] Tanana V. P., Bulatova M. G., “Otsenka pogreshnosti priblizhennogo resheniya obratnoi zadachi teplovoi diagnostiki”, Sib. zhurn. vychisl. matematiki, 13:1 (2010), 89–100 | Zbl