On a~precision estimate for a~hydrodynamics problem with discontinuous coefficients in the norm of the space~$\mathbf L_2(\Omega_h)$
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 110-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the 2-dimensional problem obtained by time-discretizing and linearizing the problem of flow of a 2-phase viscous fluid without mixing in the statement of incompressible Navier–Stokes equations with time-dependent interface. For an approximate solution to this problem we construct a scheme of a nonconformal finite element method. We estimate the rate of convergence of the mesh solution to the exact solution to the problem in the norm of $\mathbf L_2(\Omega_h)$, which agrees with simulations.
Keywords: discontinuous coefficients, nonconformal finite element method
Mots-clés : domain decomposition, mortar elements.
@article{SJIM_2012_15_1_a10,
     author = {A. V. Rukavishnikov},
     title = {On a~precision estimate for a~hydrodynamics problem with discontinuous coefficients in the norm of the space~$\mathbf L_2(\Omega_h)$},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {110--122},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a10/}
}
TY  - JOUR
AU  - A. V. Rukavishnikov
TI  - On a~precision estimate for a~hydrodynamics problem with discontinuous coefficients in the norm of the space~$\mathbf L_2(\Omega_h)$
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 110
EP  - 122
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a10/
LA  - ru
ID  - SJIM_2012_15_1_a10
ER  - 
%0 Journal Article
%A A. V. Rukavishnikov
%T On a~precision estimate for a~hydrodynamics problem with discontinuous coefficients in the norm of the space~$\mathbf L_2(\Omega_h)$
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 110-122
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a10/
%G ru
%F SJIM_2012_15_1_a10
A. V. Rukavishnikov. On a~precision estimate for a~hydrodynamics problem with discontinuous coefficients in the norm of the space~$\mathbf L_2(\Omega_h)$. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 110-122. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a10/

[1] Rukavishnikov A. V., “Obobschennaya postanovka zadachi techeniya dvukhfaznoizhidkosti s nepreryvno izmenyayuschimsya interfeisom”, Mat. modelirovanie, 20:3 (2008), 3–8 | MR | Zbl

[2] Bernardi C., Maday Y., Patera A., “A new nonconforming approach to domain decomposition: the mortar element method”, Nonlinear Partial Differential Equations and Their Applications, Pitman, Paris, 1994, 13–51 | MR | Zbl

[3] Ben Belgacem F., “The mixed mortar finite element method for the incompressible Stokes problem: convergence analysis”, SIAM J. Numer. Anal., 37:4 (2000), 1085–1100 | DOI | MR | Zbl

[4] Rukavishnikov A. V., Rukavishnikov V. A., “Nekonformnyi metod konechnykh elementov dlya zadachi Stoksa s razryvnym koeffitsientom”, Sib. zhurn. industr. matematiki, 10:4 (2007), 104–117 | MR | Zbl

[5] Rukavishnikov A. V., “O postroenii chislennogo metoda dlya zadachi Stoksa s razryvnym koeffitsientom vyazkosti”, Vychisl. tekhnologii, 14:2 (2009), 110–123 | Zbl

[6] Sedov L. I., Mekhanika sploshnoi sredy, Nauka, M., 1970

[7] Elman H., Silvester D., Wathen A., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Univ. Press, Oxford, 2005 | MR | Zbl

[8] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer, N.Y., 1991 | MR | Zbl

[9] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, Uspekhi mat. nauk, 43:5 (1988), 55–98 | MR | Zbl

[10] Rukavishnikov A. V., “O suschestvovanii i edinstvennosti obobschennogo resheniya zadachi Stoksa s razryvnym mnozhitelem”, Nauka – Khabarovskomu krayu, Materialy 7 Kraevogo konkursa-konf. molodykh uchenykh, izd. KhGTU, Khabarovsk, 2005, 75–94

[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[12] Braess D., Dahmen W., Wieners C., “A multigrid algorithm for the mortar finite element methods”, SIAM J. Numer. Anal., 37:1 (1999), 48–69 | DOI | MR | Zbl

[13] Wohlmuth B., “Hierarchical a posteriori error estimators for mortar finite element methods with Lagrange multipliers”, SIAM J. Numer. Anal., 36:5 (1999), 1636–1658 | DOI | MR | Zbl