Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2012_15_1_a10, author = {A. V. Rukavishnikov}, title = {On a~precision estimate for a~hydrodynamics problem with discontinuous coefficients in the norm of the space~$\mathbf L_2(\Omega_h)$}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {110--122}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a10/} }
TY - JOUR AU - A. V. Rukavishnikov TI - On a~precision estimate for a~hydrodynamics problem with discontinuous coefficients in the norm of the space~$\mathbf L_2(\Omega_h)$ JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2012 SP - 110 EP - 122 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a10/ LA - ru ID - SJIM_2012_15_1_a10 ER -
%0 Journal Article %A A. V. Rukavishnikov %T On a~precision estimate for a~hydrodynamics problem with discontinuous coefficients in the norm of the space~$\mathbf L_2(\Omega_h)$ %J Sibirskij žurnal industrialʹnoj matematiki %D 2012 %P 110-122 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a10/ %G ru %F SJIM_2012_15_1_a10
A. V. Rukavishnikov. On a~precision estimate for a~hydrodynamics problem with discontinuous coefficients in the norm of the space~$\mathbf L_2(\Omega_h)$. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 110-122. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a10/
[1] Rukavishnikov A. V., “Obobschennaya postanovka zadachi techeniya dvukhfaznoizhidkosti s nepreryvno izmenyayuschimsya interfeisom”, Mat. modelirovanie, 20:3 (2008), 3–8 | MR | Zbl
[2] Bernardi C., Maday Y., Patera A., “A new nonconforming approach to domain decomposition: the mortar element method”, Nonlinear Partial Differential Equations and Their Applications, Pitman, Paris, 1994, 13–51 | MR | Zbl
[3] Ben Belgacem F., “The mixed mortar finite element method for the incompressible Stokes problem: convergence analysis”, SIAM J. Numer. Anal., 37:4 (2000), 1085–1100 | DOI | MR | Zbl
[4] Rukavishnikov A. V., Rukavishnikov V. A., “Nekonformnyi metod konechnykh elementov dlya zadachi Stoksa s razryvnym koeffitsientom”, Sib. zhurn. industr. matematiki, 10:4 (2007), 104–117 | MR | Zbl
[5] Rukavishnikov A. V., “O postroenii chislennogo metoda dlya zadachi Stoksa s razryvnym koeffitsientom vyazkosti”, Vychisl. tekhnologii, 14:2 (2009), 110–123 | Zbl
[6] Sedov L. I., Mekhanika sploshnoi sredy, Nauka, M., 1970
[7] Elman H., Silvester D., Wathen A., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Univ. Press, Oxford, 2005 | MR | Zbl
[8] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer, N.Y., 1991 | MR | Zbl
[9] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, Uspekhi mat. nauk, 43:5 (1988), 55–98 | MR | Zbl
[10] Rukavishnikov A. V., “O suschestvovanii i edinstvennosti obobschennogo resheniya zadachi Stoksa s razryvnym mnozhitelem”, Nauka – Khabarovskomu krayu, Materialy 7 Kraevogo konkursa-konf. molodykh uchenykh, izd. KhGTU, Khabarovsk, 2005, 75–94
[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[12] Braess D., Dahmen W., Wieners C., “A multigrid algorithm for the mortar finite element methods”, SIAM J. Numer. Anal., 37:1 (1999), 48–69 | DOI | MR | Zbl
[13] Wohlmuth B., “Hierarchical a posteriori error estimators for mortar finite element methods with Lagrange multipliers”, SIAM J. Numer. Anal., 36:5 (1999), 1636–1658 | DOI | MR | Zbl