Approximation of discontinuity lines of a~noisy function of two variables
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and study methods for localizing (determining the location) a line in whose neighborhood the function of two variables in question is smooth while having discontinuity of the first kind along the line. Instead of the exact function, an approximation in $L_2$ is available with a known noise level. This problem belongs to the class of ill-posed nonlinear problems and, in order to solve it, we have to construct regularizing algorithms. We propose a simplified theoretical approach to the problem of discontinuity line localization for a noisy function with conditions on the exact function imposed in an arbirarily thin strip crossing the discontinuity line. We construct averaging methods and estimate the precision of localization for them.
Keywords: ill-posed problem, regularizing algorithm, localization of singularities, discontinuity of the first kind.
@article{SJIM_2012_15_1_a0,
     author = {A. L. Ageev and T. V. Antonova},
     title = {Approximation of discontinuity lines of a~noisy function of two variables},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a0/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - Approximation of discontinuity lines of a~noisy function of two variables
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 3
EP  - 13
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a0/
LA  - ru
ID  - SJIM_2012_15_1_a0
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T Approximation of discontinuity lines of a~noisy function of two variables
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 3-13
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a0/
%G ru
%F SJIM_2012_15_1_a0
A. L. Ageev; T. V. Antonova. Approximation of discontinuity lines of a~noisy function of two variables. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a0/

[1] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005

[2] Furman Ya. A. [i dr.], Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, Fizmatlit, M., 2002

[3] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR | Zbl

[4] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[5] Vasin V. V., Ageev A. L., Ill-Posed Problems with a Priori Information, VSP, Utrecht, 1995 | MR | Zbl

[6] Ageev A. L., Antonova T. V., “O zadache razdeleniya osobennostei”, Izv. vuzov. Matematika, 2007, no. 11, 3–9 | MR

[7] Antonova T. V., “Vosstanovlenie funktsii s konechnym chislom razryvov 1-go roda po zashumlennym dannym”, Izv. vuzov. Matematika, 2001, no. 7, 65–68 | MR | Zbl

[8] Antonova T. V., “Approximation of function with finite number of discontinuities by noised data”, J. Inverse Ill-Posed Probl., 10:2 (2002), 113–123 | MR | Zbl

[9] Antonova T. V., “Novye metody lokalizatsii razryvov zashumlennoi funktsii”, Sib. zhurn. vychisl. matematiki, 13:4 (2010), 375–386

[10] Ageev A. L., Antonova T. V., “Regulyariziruyuschie algoritmy vydeleniya razryvov v nekorrektnykh zadachakh”, Zhurn. vychisl. matematiki i mat. fiziki, 48:8 (2008), 1362–1370 | MR | Zbl

[11] Ageev A. L., Antonova T. V., “O novom klasse nekorrektno postavlennykh zadach”, Izv. Ural. gos. un-ta. Matematika. Mekhanika. Informatika, 58:11 (2008), 24–42 | Zbl