A hyperbolic model of neutron diffusion in a~one-dimensional moderator
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 76-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some boundary value problem describing the diffusion of thermal neutrons in a homogeneous one-dimensional medium accounting for absorption and breeding in the framework of a hyperbolic model of diffusion. We prove a unique existence theorem. The construction of a solution reduces to solving successively systems of linear integral equations of the second kind.
Keywords: generalized Fick's law, one-dimensional medium, Riemann matrices of the first and second kinds, reduction of a mixed problem to a Cauchy problem.
Mots-clés : thermal neutrons
@article{SJIM_2011_14_4_a7,
     author = {R. K. Romanovskiǐ and T. V. Ivanchenko},
     title = {A hyperbolic model of neutron diffusion in a~one-dimensional moderator},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {76--85},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a7/}
}
TY  - JOUR
AU  - R. K. Romanovskiǐ
AU  - T. V. Ivanchenko
TI  - A hyperbolic model of neutron diffusion in a~one-dimensional moderator
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 76
EP  - 85
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a7/
LA  - ru
ID  - SJIM_2011_14_4_a7
ER  - 
%0 Journal Article
%A R. K. Romanovskiǐ
%A T. V. Ivanchenko
%T A hyperbolic model of neutron diffusion in a~one-dimensional moderator
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 76-85
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a7/
%G ru
%F SJIM_2011_14_4_a7
R. K. Romanovskiǐ; T. V. Ivanchenko. A hyperbolic model of neutron diffusion in a~one-dimensional moderator. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 76-85. http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a7/