A hyperbolic model of neutron diffusion in a~one-dimensional moderator
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 76-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some boundary value problem describing the diffusion of thermal neutrons in a homogeneous one-dimensional medium accounting for absorption and breeding in the framework of a hyperbolic model of diffusion. We prove a unique existence theorem. The construction of a solution reduces to solving successively systems of linear integral equations of the second kind.
Keywords: generalized Fick's law, one-dimensional medium, Riemann matrices of the first and second kinds, reduction of a mixed problem to a Cauchy problem.
Mots-clés : thermal neutrons
@article{SJIM_2011_14_4_a7,
     author = {R. K. Romanovskiǐ and T. V. Ivanchenko},
     title = {A hyperbolic model of neutron diffusion in a~one-dimensional moderator},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {76--85},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a7/}
}
TY  - JOUR
AU  - R. K. Romanovskiǐ
AU  - T. V. Ivanchenko
TI  - A hyperbolic model of neutron diffusion in a~one-dimensional moderator
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 76
EP  - 85
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a7/
LA  - ru
ID  - SJIM_2011_14_4_a7
ER  - 
%0 Journal Article
%A R. K. Romanovskiǐ
%A T. V. Ivanchenko
%T A hyperbolic model of neutron diffusion in a~one-dimensional moderator
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 76-85
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a7/
%G ru
%F SJIM_2011_14_4_a7
R. K. Romanovskiǐ; T. V. Ivanchenko. A hyperbolic model of neutron diffusion in a~one-dimensional moderator. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 76-85. http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a7/

[1] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shkola, M., 1967 | Zbl

[2] Korneev S. A., “Giperbolicheskie uravneniya teploprovodnosti”, Izv. RAN. Ser. Energetika, 2001, no. 4, 117–125

[3] Kartashov E. M., Remizova O. I., “Novye integralnye sootnosheniya v teorii nestatsionarnogo teploperenosa na osnove upravleniya giperbolicheskogo tipa”, Izv. RAN. Ser. Energetika, 2002, no. 3, 146–156

[4] Burakhanov B. M., Lyutikova E. N., Medin S. A., Giperbolicheskaya teploprovodnost i vtoroi zakon termodinamiki, Preprint OIVTRAN No 2-462, M., 2002, 28 pp.

[5] Lykov A. V., “Primenenie metodov termodinamiki neobratimykh protsessov k issledovaniyu teplo- i massoobmena”, Inzh.-fiz. zhurn., 9:3 (1965), 287–304

[6] Samogil I., “Ratsionalnaya termodinamika nereagiruyuschei binarnoi lineinoi zhidkosti”, Inzh.-fiz. zhurn., 25:2 (1973), 271–285 | MR

[7] Korneev S. A., “Primenenie gidrodinamicheskoi modeli diffuzii Maksvella–Stefana k analizu nestatsionarnogo massoobmena v binarnykh gazovykh smesyakh”, Trudy Shkoly-seminara akad. RAN A. I. Leonteva, Izd-vo MEI, M., 2001, 366–368

[8] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978 | MR

[9] Galanin A. D., Teoriya reaktorov na teplovykh neitronakh, Atomizdat, M., 1959 | Zbl

[10] Marchuk G. I., Metody rascheta yadernykh reaktorov, Gosatomizdat, M., 1961

[11] Romanovskii R. K., “O matritsakh Rimana pervogo i vtorogo roda”, Mat. sb., 127(169):4 (1985), 494–501 | MR | Zbl

[12] Romanovskii R. K., Vorobeva E. V., Stratilatova E. N., Metod Rimana dlya giperbolicheskikh sistem, Nauka, Novosibirsk, 2007

[13] Vorobeva E. V., Romanovskii R. K., “Metod kharakteristik dlya giperbolicheskikh kraevykh zadach na ploskosti”, Sib. mat. zhurn., 41:3 (2000), 531–540 | MR | Zbl

[14] Smirnov V. I., Kurs vysshei matematiki, v. 4, ch. 1, Nauka, M., 1974 | MR

[15] P. P. Zabreiko, A. I. Koshelev, M. A. Krasnoselskii i dr., Integralnye uravneniya, Nauka, M., 1968 | MR

[16] Romanovskii R. K., Stratilatova E. N., “Reshenie odnomernoi odnofaznoi zadachi Stefana metodom granichnykh integralnykh uravnenii”, Sib. zhurn. industr. matematiki, 7:3(19) (2004), 119–131 | MR | Zbl