An equilibrium problem for a~Timoshenko plate with a~through crack
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 32-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the equilibrium problem for an elastic plate (Timoshenko model) with a vertical crack. On the curve defining the through crack we impose a boundary condition as an inequality describing the nonpenetration of the opposite crack edges. We prove the unique solvability of the variational statement of the problem. From the variational statement we deduce a complete system of boundary conditions, which we use to obtain an equivalent differential statement. We establish additional smoothness of the solution in comparison with that given in the variational statement. We prove that the solution functions are infinitely smooth under additional assumptions on the function of external loads and the functions of displacements near the curve describing the through crack.
@article{SJIM_2011_14_4_a3,
     author = {N. P. Lazarev},
     title = {An equilibrium problem for {a~Timoshenko} plate with a~through crack},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {32--43},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a3/}
}
TY  - JOUR
AU  - N. P. Lazarev
TI  - An equilibrium problem for a~Timoshenko plate with a~through crack
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 32
EP  - 43
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a3/
LA  - ru
ID  - SJIM_2011_14_4_a3
ER  - 
%0 Journal Article
%A N. P. Lazarev
%T An equilibrium problem for a~Timoshenko plate with a~through crack
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 32-43
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a3/
%G ru
%F SJIM_2011_14_4_a3
N. P. Lazarev. An equilibrium problem for a~Timoshenko plate with a~through crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 32-43. http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a3/

[1] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974

[2] Rabotnov Yu. I., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl

[3] Levin V. A., Morozov E. M., Matvienko Yu. G., Izbrannye nelineinye zadachi mekhaniki razrusheniya, Fizmatlit, M., 2004

[4] Slepyan L. I., Mekhanika treschin, Sudostroenie, L., 1981 | Zbl

[5] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR

[6] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser Verl., Basel–Boston–Berlin, 1997 | MR | Zbl

[7] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[8] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[9] Rudoi E. M., “Formula Griffitsa dlya plastiny s treschinoi”, Sib. zhurn. industr. matematiki, 5:3 (2002), 155–161 | MR | Zbl

[10] Lazarev N. P., “Differentsirovanie funktsionala energii v zadache o ravnovesii plastiny, soderzhaschei naklonnuyu treschinu”, Vestnik NGU, 3:2 (2003), 62–73 | MR | Zbl

[11] Popova T. S., “O regulyarnosti resheniya zadachi ravnovesiya dlya plastiny s treschinoi”, Mat. zametki YaGU, 3:2 (1996), 124–132 | Zbl

[12] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestnik NGU, 9:4 (2009), 51–64 | MR

[13] Khludnev A. M., “Ob odnostoronnem kontakte dvukh plastin, raspolozhennykh pod uglom drug k drugu”, Prikl. mekhanika i tekhn. fizika, 49:4 (2008), 42–58 | MR

[14] Volmir A. S., Nelineinaya dinamika plastinok i obolochek, Nauka, M., 1972 | MR

[15] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Nauka, M., 1974

[16] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[17] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR