On a~correlation method for studying random wave fields
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 24-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of reconstructing the probabilistic characteristics of a group of random acoustic sources from the measured space-time acoustic field coherence function on manifolds of various dimensions. We establish the unique solvability of this inverse problem in various formulations.
Keywords: random wave field, hyperbolic equation, coherence function, inverse problem, integral equation.
@article{SJIM_2011_14_4_a2,
     author = {M. Yu. Kokurin},
     title = {On a~correlation method for studying random wave fields},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {24--31},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a2/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - On a~correlation method for studying random wave fields
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 24
EP  - 31
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a2/
LA  - ru
ID  - SJIM_2011_14_4_a2
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T On a~correlation method for studying random wave fields
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 24-31
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a2/
%G ru
%F SJIM_2011_14_4_a2
M. Yu. Kokurin. On a~correlation method for studying random wave fields. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 24-31. http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a2/

[1] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005

[2] Rytov S. M., Kravtsov Yu. A., Tatarskii V. I., Vvedenie v statisticheskuyu radiofiziku. Chast 2. Sluchainye polya, Nauka, M., 1978

[3] Rytov S. M., Vvedenie v statisticheskuyu radiofiziku. Chast 1. Sluchainye protsessy, Nauka, M., 1976

[4] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[5] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2008

[6] Ramm A. G., Mnogomernye obratnye zadachi, Mir, M., 1994 | Zbl

[7] Lavrentev M. M., “Ob odnom klasse obratnykh zadach dlya differentsialnykh uravnenii”, Dokl. AN SSSR, 160:1 (1965), 32–35 | MR

[8] Bakushinskii A. B., Kozlov A. I., Kokurin M. Yu., “Ob odnoi obratnoi zadache dlya trekhmernogo volnovogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 43:8 (2003), 1201–1209 | MR | Zbl

[9] Bakushinskii A. B., Goncharskii A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989

[10] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002

[11] Kravtsov V. V., “Priblizhenie funktsii mnogikh peremennykh antennym potentsialom”, Dokl. AN SSSR, 233:1 (1977), 23–26 | MR | Zbl

[12] Goncharskii A. V., Romanov S. Yu., “Ob odnoi trekhmernoi zadache diagnostiki v volnovom priblizhenii”, Zhurn. vychisl. matematiki i mat. fiziki, 40:9 (2000), 1364–1367 | MR | Zbl

[13] Romanov V. G., Ustoichivost v obratnykh zadachakh, Nauch. mir, M., 2005 | MR

[14] Vatulyan A. O., Obratnye zadachi v mekhanike deformiruemogo tverdogo tela, Fizmatlit, M., 2007