Tsunami waveguides
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 111-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the submerged ridges that are periodic (in one direction), chains of submerged mountains and islands possess waveguide properties for long waves. We state a boundary value problem whose generalized eigensolutions describe the generalized eigenwaves on the fluid surface localized near the structure. We show the existence of generalized eigensolutions and eigenwaves localized near a periodic structure above or below the surface. We prove that in a neighborhood of zero there exists a pass band. We study resonance phenomena near periodic in one direction tsunami waveguides and show that two types of resonance phenomena may occur in these problems: spatially localized and synchrophasotronic.
Keywords: waveguide, periodic structures, spectral properties of the Laplacian
Mots-clés : tsunami.
@article{SJIM_2011_14_4_a10,
     author = {S. V. Sukhinin and V. S. Yurkovskiǐ},
     title = {Tsunami waveguides},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {111--124},
     year = {2011},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a10/}
}
TY  - JOUR
AU  - S. V. Sukhinin
AU  - V. S. Yurkovskiǐ
TI  - Tsunami waveguides
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 111
EP  - 124
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a10/
LA  - ru
ID  - SJIM_2011_14_4_a10
ER  - 
%0 Journal Article
%A S. V. Sukhinin
%A V. S. Yurkovskiǐ
%T Tsunami waveguides
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 111-124
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a10/
%G ru
%F SJIM_2011_14_4_a10
S. V. Sukhinin; V. S. Yurkovskiǐ. Tsunami waveguides. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 111-124. http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a10/

[1] Ursell F., “Trapping modes in the theory of surface waves”, Proc. Cambridge Phil. Soc., 47 (1951), 347–358 | DOI | MR | Zbl

[2] Jones D. S., “The eigenvalues of $\Delta u+\lambda u=0$ when the boundary condition are given on semi infinite domains”, Proc. Cambridge Phil. Soc., 49 (1953), 668–684 | DOI | MR | Zbl

[3] Ursell F., “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 183 (1987), 421–437 | DOI | MR | Zbl

[4] Garipov R. M., “Neustanovivshiesya volny nad podvodnym khrebtom”, Dokl. AN SSSR, 161:3 (1965), 547–550 | Zbl

[5] Lavrentev M. A., Shabat B. V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973 | MR

[6] Bichenkov E. I., Garipov R. M., “Rasprostranenie voln na poverkhnosti tyazheloi zhidkosti v basseine s nerovnym dnom”, Prikl. mekhanika i tekhn. fizika, 1969, no. 2, 21–26

[7] Nalimov V. I., Plotnikov P. I., “Neregulyarnye zadachi na sobstvennye znacheniya i effekt volnovoda”, Dinamika sploshnoi sredy, 23, 1975, 132–151

[8] Babich V. M., Bilyi I. Ya., “O volnovodnykh svoistvakh podvodnogo gornogo khrebta”, Mekhanika zhidkogo gaza, 1979, no. 3, 152–156 | MR

[9] Masayuki Oikawa, Junkichi Satsuma, Nobio Yajima, “Shallow water waves propagating along undulation of bottom surface”, J. Phys. Soc. Japan, 37:2 (1974), 511–517 | DOI | MR

[10] Sukhinin S. V., “Effekt volnovoda”, Annotatsii dokladov 6 Vsesoyuz. s'ezda po teoreticheskoi i prikladnoi mekhanike, Tashkent, 1986, 537–538

[11] Sukhinin S. V., “Effekt volnovoda”, Prikl. mekhanika i tekhn. fizika, 1989, no. 2, 92–101 | MR

[12] Bonnet-Ben Dhia A.-S., Joly P., “Mathematical analysis of guided water waves”, SIAM J. Appl. Math., 53:6 (1993), 1507–1550 | DOI | MR | Zbl

[13] Sukhinin S. V., “Effekt shepchuschei poverkhnosti”, Prikl. matematika i mekhanika, 63:6 (1999), 923–937 | MR

[14] Sukhinin S. V., “Effekt volnovoda odnomerno periodicheskoi pronitsaemoi struktury”, Prikl. mekhanika i tekhn. fizika, 31:4 (1990), 77–85 | MR

[15] Sukhinin S. V., “Volnovodnoe, anomalnoe i shepchuschee svoistva periodicheskoi tsepochki prepyatstvii”, Sib. zhurn. industr. matematiki, 1:2 (1998), 175–198 | MR | Zbl

[16] Nikulin V. V., Shafarevich I. R., Geometrii i gruppy, Nauka, M., 1983 | MR

[17] Bagavantam S., Venkataraiudu T., Teoriya grupp i ee primenenie k fizicheskim problemam, Izd-vo inostr. lit., M., 1959

[18] Lyubarskii G. Ya., Teoriya grupp i ee primenenie v fizike, Fizmatgiz, M., 1958 | MR

[19] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR

[20] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1982