The existence of stationary solutions in a~mathematical model of a~chemical reactor
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model of a nonadiabatic tubular reactor. We derive a priori estimates and prove the existence of a classical solution to a boundary value problem in a system of two quasilinear ordinary differential equations.
Keywords: mathematical model, chemical reactor, control, stationary solution.
@article{SJIM_2011_14_3_a7,
     author = {K. S. Musabekov},
     title = {The existence of stationary solutions in a~mathematical model of a~chemical reactor},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a7/}
}
TY  - JOUR
AU  - K. S. Musabekov
TI  - The existence of stationary solutions in a~mathematical model of a~chemical reactor
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 67
EP  - 78
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a7/
LA  - ru
ID  - SJIM_2011_14_3_a7
ER  - 
%0 Journal Article
%A K. S. Musabekov
%T The existence of stationary solutions in a~mathematical model of a~chemical reactor
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 67-78
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a7/
%G ru
%F SJIM_2011_14_3_a7
K. S. Musabekov. The existence of stationary solutions in a~mathematical model of a~chemical reactor. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 67-78. http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a7/

[1] Georgakis C., Aris R., Amundson N. R., “Studies in the control of tubular reactors”, Chem. Engrg. Sci., 32:11 (1977), 1359–1387 | DOI

[2] Musabekov K. S., “Suschestvovanie optimalnogo upravleniya v odnoi regulyarizovannoi zadache s fazovym ogranicheniem”, Vestn. Novosib. gos. un-ta. Ser. Matematika, mekhanika, informatika, 10:2 (2010), 71–84

[3] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[4] Belonosov V. S., Zelenyak T. I., Nelokalnye problemy v teorii kvazilineinykh parabolicheskikh uravnenii, izd. NGU, Novosibirsk, 1975 | MR

[5] Lerei Zh., Shauder Yu., “Topologiya i funktsionalnye uravneniya”, Uspekhi mat. nauk, 1:3–4 (1946), 71–95 | MR | Zbl

[6] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[7] Kruzhkov S. N., Nelineinye uravneniya s chastnymi proizvodnymi, Ch. 1, Izd-vo MGU, M., 1969