Friedrichs systems equivalent to the systems of wave equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 132-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

Description up to equivalence transformations is given for all evolutionary symmetric $t$-hyperbolic Friedrichs systems equivalent to the systems of two- and three-dimensional wave equations. We obtain the evolutionary symmetric $t$-hyperbolic Friedrichs systems that describe shear waves in a three-dimensional isotropic elastic medium both in the presence and absence of mass forces. Studying the group properties of some of these systems, we point out a system equivalent to the Maxwell equations for the electromagnetic field in vacuum that consists of the equations in involution under charge conservation of an evolutionary symmetric $t$-hyperbolic Friedrichs system and the Lorentz condition.
Keywords: Friedrichs system, wave equations, equivalent systems, shear wave in a three-dimensional isotropic elastic medium, Maxwell's equations, involution.
Mots-clés : equivalence transformation
@article{SJIM_2011_14_3_a13,
     author = {Yu. A. Chirkunov},
     title = {Friedrichs systems equivalent to the systems of wave equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {132--142},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a13/}
}
TY  - JOUR
AU  - Yu. A. Chirkunov
TI  - Friedrichs systems equivalent to the systems of wave equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 132
EP  - 142
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a13/
LA  - ru
ID  - SJIM_2011_14_3_a13
ER  - 
%0 Journal Article
%A Yu. A. Chirkunov
%T Friedrichs systems equivalent to the systems of wave equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 132-142
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a13/
%G ru
%F SJIM_2011_14_3_a13
Yu. A. Chirkunov. Friedrichs systems equivalent to the systems of wave equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 132-142. http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a13/

[1] Gordienko V. M., “Sistemy Fridrikhsa dlya trekhmernogo volnovogo uravneniya”, Differentsialnye uravneniya. Funktsionalnye prostranstva. Teoriya priblizhenii, Tez. dokl. Mezhd. konf., posvyasch. 100-letiyu S. L. Soboleva, Izd-vo In-ta matematiki, Novosibirsk, 2008, 126

[2] Gordienko V. M., “Primenenie kvaternionov v teorii volnovogo uravneniya”, Matematika v prilozheniyakh, Vseros. konf., priurochennaya k 80-letiyu S. K. Godunova, Izd-vo In-ta matematiki, Novosibirsk, 2009, 90–91

[3] Gordienko V. M., “Sistemy Fridrikhsa dlya volnovogo uravneniya”, Sib. mat. zhurn., 51:6 (2010), 1282–1297 | MR

[4] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR

[5] Poruchikov V. B., Metody dinamicheskoi teorii uprugosti, Nauka, M., 1986 | MR

[6] Chirkunov Yu. A., “Usloviya lineinoi avtonomnosti osnovnoi algebry Li sistemy lineinykh differentsialnykh uravnenii”, Dokl. AN, 426:5 (2009), 605–607 | MR | Zbl

[7] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[8] Levich V. G., Kurs teoreticheskoi fiziki, v. 1, Fizmatgiz, M., 1962