On a~game of influence on system parameters
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 55-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a game with finitely many players. The gain functions depend not only on the players' strategy profiles, but also on a certain vector state parameter of the system. The relation between a strategy profile and the value of the state parameter is defined quite generally as a correspondence. A player's decision on the best response to the system state and the other players' strategy profiles is made under the additional assumption that the variation of a player's strategy influences the variation of the system parameter. We consider both the version with constant assumptions and the version in which these assumptions by the players are in some correspondence with the strategy profiles and the value of the system parameter. We generalize the concept of equilibrium to this case and prove a theorem of its existence.
Keywords: game theory, nonsmooth model of game theory, equilibrium with assumed variation.
@article{SJIM_2011_14_2_a6,
     author = {V. A. Bulavskii},
     title = {On a~game of influence on system parameters},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a6/}
}
TY  - JOUR
AU  - V. A. Bulavskii
TI  - On a~game of influence on system parameters
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 55
EP  - 62
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a6/
LA  - ru
ID  - SJIM_2011_14_2_a6
ER  - 
%0 Journal Article
%A V. A. Bulavskii
%T On a~game of influence on system parameters
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 55-62
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a6/
%G ru
%F SJIM_2011_14_2_a6
V. A. Bulavskii. On a~game of influence on system parameters. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 55-62. http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a6/

[1] von Neumann J., “Über ein Ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes”, Ergeb. eines Math. Kolloqueims, 8 (1937), 73–83 | Zbl

[2] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972

[3] Kakutani S., “A generalisation of Brouwer's fixedpoint theorem”, Duke Math. J., 8:3 (1941), 457–459 | DOI | MR | Zbl

[4] Bulavskii V. A., Kalashnikov V. V., “Ravnovesie v obobschennykh modelyakh Kurno i Shtakelberga”, Ekonomika i mat. metody, 31:3 (1995), 151–163

[5] Savage L. J., “The theory of statistical decision”, J. Amer. Statist. Assoc., 46 (1951), 55–67 | DOI | Zbl