A three-dimensional analog of the Tricomi problem for a~parabolic-hyperbolic equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 34-44

Voir la notice de l'article provenant de la source Math-Net.Ru

For a parabolic-hyperbolic equation, we study the three-dimensional analog of the Tricomi problem with a noncharacteritic plane on which the type of the equation changes. The uniqueness of the solution to the problem is proved by the method of a priori estimates, and the existence of a solution is reduced to the existence of a solution to a Volterra integral equation of the second kind.
Keywords: parabolic-hyperbolic equation, Tricomi problem, maximum principle, uniqueness, integral equation.
Mots-clés : Fourier transform, existence
@article{SJIM_2011_14_2_a4,
     author = {Yu. P. Apakov},
     title = {A three-dimensional analog of the {Tricomi} problem for a~parabolic-hyperbolic equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {34--44},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a4/}
}
TY  - JOUR
AU  - Yu. P. Apakov
TI  - A three-dimensional analog of the Tricomi problem for a~parabolic-hyperbolic equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 34
EP  - 44
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a4/
LA  - ru
ID  - SJIM_2011_14_2_a4
ER  - 
%0 Journal Article
%A Yu. P. Apakov
%T A three-dimensional analog of the Tricomi problem for a~parabolic-hyperbolic equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 34-44
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a4/
%G ru
%F SJIM_2011_14_2_a4
Yu. P. Apakov. A three-dimensional analog of the Tricomi problem for a~parabolic-hyperbolic equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 34-44. http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a4/