A three-dimensional analog of the Tricomi problem for a~parabolic-hyperbolic equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 34-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a parabolic-hyperbolic equation, we study the three-dimensional analog of the Tricomi problem with a noncharacteritic plane on which the type of the equation changes. The uniqueness of the solution to the problem is proved by the method of a priori estimates, and the existence of a solution is reduced to the existence of a solution to a Volterra integral equation of the second kind.
Keywords: parabolic-hyperbolic equation, Tricomi problem, maximum principle, uniqueness, integral equation.
Mots-clés : Fourier transform, existence
@article{SJIM_2011_14_2_a4,
     author = {Yu. P. Apakov},
     title = {A three-dimensional analog of the {Tricomi} problem for a~parabolic-hyperbolic equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {34--44},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a4/}
}
TY  - JOUR
AU  - Yu. P. Apakov
TI  - A three-dimensional analog of the Tricomi problem for a~parabolic-hyperbolic equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 34
EP  - 44
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a4/
LA  - ru
ID  - SJIM_2011_14_2_a4
ER  - 
%0 Journal Article
%A Yu. P. Apakov
%T A three-dimensional analog of the Tricomi problem for a~parabolic-hyperbolic equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 34-44
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a4/
%G ru
%F SJIM_2011_14_2_a4
Yu. P. Apakov. A three-dimensional analog of the Tricomi problem for a~parabolic-hyperbolic equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 34-44. http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a4/

[1] Gelfand I. M., “Nekotorye voprosy analiza i differentsialnykh uravnenii”, Uspekhi mat. nauk, 14:3(87) (1959), 3–19 | MR | Zbl

[2] Stiruchina G. M., “Zadacha o sopryazhenii dvukh uravnenii”, Inzh.-fiz. zhurn., 4:11 (1961), 99–104

[3] Uflyand Ya. S., “K voprosu o rasprostranenii kolebanii v sostavnykh elektricheskikh liniyakh”, Inzh.-fiz. zhurn., 7:1 (1964), 89–92

[4] Bitsadze A. V., “Ob odnom trekhmernom analoge zadachi Trikomi”, Sib. mat. zhurn., 3:5 (1962), 642–644 | Zbl

[5] Nakhushev A. M., “Ob odnom trekhmernom analoge zadachi Gellerstedta”, Differents. uravneniya (Minsk), 4:1 (1968), 52–62 | Zbl

[6] Ezhov A. M., Pulkin S. P., “Otsenka resheniya zadachi Trikomi dlya odnogo klassa uravnenii smeshannogo tipa”, Dokl. AN SSSR, 193:5 (1970), 978–980 | Zbl

[7] Ezhov A. M., “O reshenii prostranstvennoi zadachi dlya uravneniya smeshannogo tipa s dvumya ploskostyami vyrozhdeniya”, Differents. uravneniya, Trudy ped. in-tov RSFSR, 2, 1973, 84–102

[8] Ponomarev S. M., “K teorii kraevykh zadach dlya uravnenii smeshannogo tipa v trekhmernykh oblastyakh”, Dokl. AN SSSR, 246:6 (1979), 1303–1306 | MR | Zbl

[9] Salakhiddinov M. S., Islomov B., “Kraevye zadachi dlya uravneniya cmeshannogo elliptikogiperbolicheskogo tipa v prostranstve”, Uzb. mat. zhurn., 1993, no. 3, 13–20

[10] Salakhiddinov M. S., Islomov B., “O trekhmernom analoge zadachi Trikomi dlya uravneniya smeshannogo tipa”, Dokl. AN SSSR, 311:4 (1990), 797–801 | MR

[11] Salakhiddinov M. S., Islomov B., “Ob odnom trekhmernom analoge zadachi Trikomi dlya uravneniya smeshannogo tipa”, Funktsionalnye metody v prikladnoi matematike i matematicheskoi fizike, Tez. dokl. Vsesoyuz. shkoly molodykh uchenykh (11–17 maya 1988), Ch. 2, izd. TashGU, Tashkent, 1988, 51–52

[12] Dzhuraev T. D., Sopuev A., “Ob odnoi prostranstvennoi zadache dlya uravneniya smeshannogo parabologiperbolicheskogo tipa”, Differents. uravneniya (Minsk), 17:1 (1981), 50–57 | MR | Zbl

[13] Sopuev A., “Otsenka resheniya odnoi zadachi Gellerstedta dlya smeshannogo parabologiperbolicheskogo tipa”, Dokl. AN UzSSR, 1982, no. 7, 3–4 | MR | Zbl

[14] Dzhuraev T. D., Sopuev A., Apakov Yu. P., “Kraevye zadachi dlya parabologiperbolicheskogo uravneniya s kharakteristicheskoi liniei izmeneniya tipa”, Uravneniya smeshannogo tipa i zadachi so svobodnoi granitsei, Fan, Tashkent, 1987, 56–65 | MR

[15] Dzhuraev T. D., Apakov Yu. P., “Zadacha Trikomi dlya parabologiperbolicheskogo uravneniya s nekharakteristicheskoi liniei izmeneniya tipa v trekhmernom prostranstve”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1986, no. 3, 21–27 | MR | Zbl

[16] Islomov B., “Ob odnoi trekhmernoi zadache dlya uravneniya smeshannogo parabologiperbolicheskogo tipa”, Dokl. AN UzSSR, 1989, no. 9, 3–5

[17] Agmon S., Nirenberg L., Protter M. H., “A maximum principal for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type”, Comm. Pure Appl. Math., 4 (1953), 455–470 | DOI | MR

[18] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi mat. nauk, 17:3 (1962), 3–146 | MR | Zbl

[19] Kruzhkov S. N., Yakubov S., “O razreshimosti odnogo klassa zadach s neizvestnoi granitsei dlya uravneniya teploprovodnosti i povedenii reshenii pri neogranichennom vozrastanii vremeni”, Dinamika sploshnoi sredy, 36, 1978, 46–70 | MR

[20] C. G. Mikhlin (red.), Lineinye uravneniya matematicheskoi fiziki, Nauka, M., 1964 | MR | Zbl

[21] Bakievich N. I., “Singulyarnye zadachi Trikomi dlya uravneniya $\eta^\alpha u_{\xi\xi}+u_{\eta\eta}-\mu^2u=0$”, Izv. vuzov. Matematika, 1964, no. 2(39), 7–13 | MR | Zbl

[22] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, Izd-vo inostr. lit., M., 1957

[23] Kapilevich M. B., “Ob odnom uravnenii smeshannogo elliptiko-giperbolicheskogo tipa”, Mat. sb., 30(72):1 (1952), 11–38 | MR | Zbl