On analytical methods in the theory of inverse problems for hyperbolic equations.~II
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 28-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new representations are given for the solutions and coefficients of the equations of mathematical physics. These representations have the form of differential-algebraic identities and are partially used in studying one-dimensional inverse problems.
Keywords: inverse problems of mathematical physics, analytic methods of solution.
@article{SJIM_2011_14_2_a3,
     author = {Yu. E. Anikonov and M. V. Neshchadim},
     title = {On analytical methods in the theory of inverse problems for hyperbolic {equations.~II}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {28--33},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a3/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
AU  - M. V. Neshchadim
TI  - On analytical methods in the theory of inverse problems for hyperbolic equations.~II
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 28
EP  - 33
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a3/
LA  - ru
ID  - SJIM_2011_14_2_a3
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%A M. V. Neshchadim
%T On analytical methods in the theory of inverse problems for hyperbolic equations.~II
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 28-33
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a3/
%G ru
%F SJIM_2011_14_2_a3
Yu. E. Anikonov; M. V. Neshchadim. On analytical methods in the theory of inverse problems for hyperbolic equations.~II. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 28-33. http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a3/

[1] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii, I”, Sib. zhurn. industr. matematiki, 14:1(45) (2011), 27–39

[2] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[3] Anikonov Yu. E., Ayupova N. B., Formuly dlya reshenii i koeffitsientov differentsialnykh uravnenii 2-go poryadka i obratnye zadachi, Preprint No 165, In-t matematiki SO RAN, Novosibirsk, 2005, 58 pp.