Systems of linear differential equations with non-$x$-autonomous basic Lie algebra
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 112-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some necessary and sufficient conditions for the non-$x$-autonomy of the basic Lie algebra of a system of first-order linear differential equations with constant coefficients over the field of complex numbers. Using these results, we establish the $x$-autonomy of the basic Lie algebra of some systems of equations of mathematical physics.
Keywords: $x$-autonomy of the basic Lie algebra, canonical systems of linear differential equations, criteria of $x$-autonomy.
@article{SJIM_2011_14_2_a13,
     author = {Yu. A. Chirkunov},
     title = {Systems of linear differential equations with non-$x$-autonomous basic {Lie} algebra},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {112--123},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a13/}
}
TY  - JOUR
AU  - Yu. A. Chirkunov
TI  - Systems of linear differential equations with non-$x$-autonomous basic Lie algebra
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 112
EP  - 123
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a13/
LA  - ru
ID  - SJIM_2011_14_2_a13
ER  - 
%0 Journal Article
%A Yu. A. Chirkunov
%T Systems of linear differential equations with non-$x$-autonomous basic Lie algebra
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 112-123
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a13/
%G ru
%F SJIM_2011_14_2_a13
Yu. A. Chirkunov. Systems of linear differential equations with non-$x$-autonomous basic Lie algebra. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 112-123. http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a13/

[1] Ovsyannikov L. V., “O svoistve $x$-avtonomii”, Dokl. AN, 330:5 (1993), 559–561 | MR | Zbl

[2] Chirkunov Yu. A., “Sistemy lineinykh differentsialnykh uravnenii, simmetrichnye otnositelno preobrazovanii, nelineinykh po funktsii”, Sib. mat. zhurn., 50:3 (2009), 680–686 | MR | Zbl

[3] Chirkunov Yu. A., “Usloviya lineinoi avtonomnosti osnovnoi algebry Li sistemy lineinykh differentsialnykh uravnenii”, Dokl. AN, 426:5 (2009), 605–607 | MR | Zbl

[4] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[5] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971 | MR

[6] Prudnikov V. Yu., Chirkunov Yu. A., “Gruppovoe rassloenie uravnenii Lame”, Prikl. matematika i mekhanika, 52:3 (1988), 471–477 | MR | Zbl

[7] Chirkunov Yu. A., “Gruppovoe rassloenie uravneniiLame klassicheskoi dinamicheskoi teorii uprugosti”, Izv. AN. Mekhanika tverdogo tela, 2009, no. 3, 47–54