Flow around an ellipsoid of revolution in a harmonic coaxial vector field
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 106-111
Cet article a éte moissonné depuis la source Math-Net.Ru
We give an integral equation defining a coaxial magnetic field near the surface of a superconductive axisymmetric body and the velocity of the liquid near the surface of an axisymmetric body situated coaxially to the flow of an ideal liquid. Using this equation in the case when the axisymmetric magnetic field before the placement of an ellipsoid of revolution coaxially to the field changed along the axis by a polynomial law, we analytically define the densities of the surface current and the force with which the magnetic field acts on the ellipsoid. Also the velocity of the liquid is determined near the surface of the ellipsoid of revolution and the force acting on the ellipsoid placed coaxially in the flow of an ideal liquid when the velocity of the liquid before the placement of the ellipsoid changed along the axis of symmetry by a polynomial law.
Keywords:
magnetic field, body of revolution, superconductivity, ellipsoid, surface currents, velocity, ideal liquid
Mots-clés : polynomial.
Mots-clés : polynomial.
@article{SJIM_2011_14_2_a12,
author = {A. O. Savchenko and O. Ya. Savchenko},
title = {Flow around an ellipsoid of revolution in a~harmonic coaxial vector field},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {106--111},
year = {2011},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a12/}
}
TY - JOUR AU - A. O. Savchenko AU - O. Ya. Savchenko TI - Flow around an ellipsoid of revolution in a harmonic coaxial vector field JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2011 SP - 106 EP - 111 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a12/ LA - ru ID - SJIM_2011_14_2_a12 ER -
A. O. Savchenko; O. Ya. Savchenko. Flow around an ellipsoid of revolution in a harmonic coaxial vector field. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 106-111. http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a12/
[1] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh tel, Nauka, M., 1992 | MR
[2] Kazantsev V. P., “Vliyanie makroskopicheskikh vklyuchenii na elektricheskie postoyannye tverdykh tel”, Izvestiya vuzov. Fizika, 1978, no. 5, 32–37
[3] Erdelyi A., “Singularities of generalized axially symmetric potentials”, Comm. Pure Appl. Math., 9 (1956), 403–414 | DOI | MR | Zbl
[4] Savchenko A. O., Savchenko O. Ya., “Poverkhnostnye toki sverkhprovodyaschego osesimmetrichnogo tela, ekraniruyuschie vneshnee soosnoe magnitnoe pole”, Zhurn. tekhn. fiziki, 77:7 (2007), 130–133
[5] Lamb G., Gidrodinamika, Gostekhizdat, M.–L., 1947