Approximate solution to the resource consumption minimization problem.~I. Construction of a~quasioptimal control
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

For linear systems with constrained control and fixed transition time, we propose two methods for solving the resource consumption minimization problem approximately. We prove that the switching moments of resource-quasioptimal controls are independent of the initial conditions and constant for autonomous systems. Some region of the initial conditions is found for which the constraints on the control are never violated.
Keywords: optimal control, resource expenditure, linear system, switching moments, conjugate system, admissible region.
Mots-clés : quasioptimal control
@article{SJIM_2011_14_2_a0,
     author = {V. M. Aleksandrov and V. A. Dykhta},
     title = {Approximate solution to the resource consumption minimization {problem.~I.} {Construction} of a~quasioptimal control},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a0/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
AU  - V. A. Dykhta
TI  - Approximate solution to the resource consumption minimization problem.~I. Construction of a~quasioptimal control
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 3
EP  - 14
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a0/
LA  - ru
ID  - SJIM_2011_14_2_a0
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%A V. A. Dykhta
%T Approximate solution to the resource consumption minimization problem.~I. Construction of a~quasioptimal control
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 3-14
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a0/
%G ru
%F SJIM_2011_14_2_a0
V. M. Aleksandrov; V. A. Dykhta. Approximate solution to the resource consumption minimization problem.~I. Construction of a~quasioptimal control. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a0/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[2] Atans M., Falb P., Optimalnoe upravlenie, Mashinostroenie, M., 1968

[3] Ragab M. Z., “Time fuel optimal deconpling control problem”, Adv. Model. Simul., 22:2 (1990), 1–16 | MR | Zbl

[4] Redmond J., Silverberg L., “Fuel consumption in optimal control”, J. Guidance Control Dynam., 15:2 (1992), 424–430 | DOI | MR | Zbl

[5] Singh T., “Fuel/time optimal control of the Benchmark problem”, J. Guidance Control Dynam., 18:6 (1995), 1225–1231 | DOI | Zbl

[6] Sachs G., Dinkelmann M., “Reduction of coolant fuel losses in hypersonic flight by optimal trajectory control”, J. Guidance Control Dynam., 19:6 (1996), 1278–1284 | DOI | Zbl

[7] Ivanov V. A., Kozhevnikov S. A., “Odna zadacha sinteza optimalnogo po “raskhodu topliva” upravleniya lineinymi ob'ektami vtorogo poryadka s proizvodnymi upravleniya”, Izv. RAN. Teoriya i sistemy upravleniya, 1996, no. 4, 77–83 | Zbl

[8] Dewell L. D., Speyer J. L., “Fuel-optimal periodic control and regulation in constrained hypersonic flight”, J. Guidance Control Dynam., 20:5 (1997), 923–932 | DOI | Zbl

[9] Liu S. W., Singh T., “Fuel/time optimal control of spacecraft maneuvers”, J. Guidance Control Dynam., 20:2 (1997), 394–397 | DOI | Zbl

[10] Aleksandrov V. M., “Priblizhennoe reshenie lineinoi zadachi na minimum raskhoda resursov”, Zhurn. vychisl. matematiki i mat. fiziki, 39:3 (1999), 418–430 | MR | Zbl

[11] Shevchenko G. V., “Metod nakhozhdeniya optimalnogo po minimumu raskhoda resursov upravleniya dlya ob'ektov spetsialnogo vida”, Avtometriya, 42:2 (2006), 49–67 | MR

[12] Krylov I. A., Chernousko F. L., “O metode posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 2:6 (1962), 1132–1139 | MR | Zbl

[13] Gindes V. B., “Odin metod posledovatelnykh priblizhenii dlya resheniya lineinykh zadach optimalnogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 10:1 (1970), 216–223 | MR | Zbl

[14] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[15] Chernousko F. L., Kolmanovskii V. B., “Vychislitelnye i priblizhennye metody optimalnogo upravleniya”, Mat. analiz, 14, M., 1977, 101–166

[16] Lyubushin A. A., “O primenenii modifikatsii metoda posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 22:1 (1982), 30–35 | MR | Zbl

[17] Grachev N. I., Evtushenko Yu. G., “Biblioteka programm dlya resheniya zadach optimalnogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 19:2 (1979), 367–387 | MR | Zbl

[18] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR

[19] Aleksandrov V. M., “Optimalnoe i kvazioptimalnoe po raskhodu resursov upravleniya dinamicheskimi sistemami”, Sib. elektronnye mat. izvestiya, 7 (2010), 166–249 http://semr.math.nsc.ru/v7/p166-249.pdf | MR

[20] Aleksandrov V. M., “Priblizhennoe reshenie zadach optimalnogo upravleniya”, Problemy kibernetiki, 41, 1984, 143–206 | Zbl