Sufficient optimality conditions in the form of the Pontryagin maximum principle in control problems for hybrid systems
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 102-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the sufficient conditions of the classical optimality theory to a class of optimal control problems for hybrid systems. For the cases of global and strong local extrema we obtain general sufficient optimality conditions and sufficient conditions in the form of the Pontryagin maximum principle. All results rest on dealing with exterior approximations of the attainability sets of controlled systems which are constructed using the solution sets to one of the Hamilton–Jacobi inequalities (strongly monotone functions of Lyapunov type).
Keywords: Hamilton–Jacobi inequality, sufficient optimality conditions, maximum principle, hybrid system.
@article{SJIM_2011_14_1_a9,
     author = {S. P. Sorokin},
     title = {Sufficient optimality conditions in the form of the {Pontryagin} maximum principle in control problems for hybrid systems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {102--113},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a9/}
}
TY  - JOUR
AU  - S. P. Sorokin
TI  - Sufficient optimality conditions in the form of the Pontryagin maximum principle in control problems for hybrid systems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 102
EP  - 113
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a9/
LA  - ru
ID  - SJIM_2011_14_1_a9
ER  - 
%0 Journal Article
%A S. P. Sorokin
%T Sufficient optimality conditions in the form of the Pontryagin maximum principle in control problems for hybrid systems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 102-113
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a9/
%G ru
%F SJIM_2011_14_1_a9
S. P. Sorokin. Sufficient optimality conditions in the form of the Pontryagin maximum principle in control problems for hybrid systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 102-113. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a9/

[1] Clarke F. H., Vinter R. B., “Optimal multiprocesses”, SIAM J. Control Optim., 27:5 (1989), 1072–1091 | DOI | MR | Zbl

[2] Clarke F. H., Vinter R. B., “Applications of optimal multiprocesses”, SIAM J. Control Optim., 27:5 (1989), 1048–1071 | DOI | MR | Zbl

[3] Sussmann H. J., “A maximum principle for hybrid optimal control problems”, Proc. 38 IEEE Conf. on Decision and Control, 1999, 425–430

[4] Sussmann H. J., “A nonsmooth hybrid maximum principle”, Lecture Notes in Control and Inform. Sci., 246, 1999, 325–354 | MR | Zbl

[5] Garavello M., Piccoli B., “Hybrid necessary principle”, SIAM J. Control Optim., 43:5 (2005), 1867–1887 | DOI | MR | Zbl

[6] Caines P. E., Clarke F. H., Liu X., Vinter R. B., “A maximum principle for hybrid optimal control problems with pathwise state constraints”, Proc. 45 IEEE Conf. on Decision and Control, 2006, 4821–4825

[7] Aschepkov L. T., Optimalnoe upravlenie razryvnymi sistemami, Nauka, Novosibirsk, 1987

[8] Dmitruk A. V., Kaganovich A. M., “The hybrid maximum principle is a consequence of Pontryagin maximum principle”, Systems and Control Letters, 57 (2008), 964–970 | DOI | MR | Zbl

[9] Dmitruk A. V., Kaganovich A. M., “Printsip maksimuma dlya zadach optimalnogo upravleniya s promezhutochnymi ogranicheniyami”, Nelineinaya dinamika i upravlenie, 6 (2008), 1–40

[10] Aubin J.-P., Lygeros J., Quincampoix M., Sastry Sh., Seube N., “Impulse differential inclusions: a viability approach to hybrid systems”, IEEE Trans. Automat. Control, 47:1 (2002), 2–20 | DOI | MR

[11] Hedlund S., Rantzer A., “Optimal control of hybrid systems”, Proc. 38 IEEE Conf. on Decision and Control, 1999, 3972–3977

[12] Galbraith G. N., Vinter R. B., “Optimal control of hybrid systems with an infinite number of discrete states”, J. Dynam. Control Systems, 9 (2002), 563–584 | DOI | MR

[13] Bortakovskii A. S., “Optimal and suboptimal control for sets of trajectories of deterministic continuous-discrete systems”, J. Comput. Systems Sci. Internat., 48:1 (2009), 14–29 | DOI | MR | Zbl

[14] Gurman V. I., Printsip rasshireniya v zadachakh upravleniya, Fizmatlit, M., 1997 | MR | Zbl

[15] Baturin V. A., Lempert A. A., “Mnogoetapnye protsessy i metody uluchsheniya v zadachakh optimalnogo upravleniya”, Vychislitelnye tekhnologii, 8 (2003), 103–108

[16] Dykhta V. A., “Dostatochnye usloviya optimalnosti v zadachakh impulsnogo upravleniya”, Vestnik Tambov. un-ta. Ser. Estestvennye i tekhn. nauki, 12:4 (2007), 443–445

[17] Dykhta V. A., “Neravenstvo Gamiltona–Yakobi i dostatochnye usloviya optimalnosti v gibridnykh upravlyaemykh sistemakh”, Teoriya upravleniya i teoriya obobschennykh reshenii uravneniya Gamiltona–Yakobi, Tez. dokl. Mezhdunar. seminara, posvyasch. 60-letiyu akad. A. I. Subbotina, 2005, 61–64

[18] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973 | MR | Zbl

[19] Krotov V. F., Global Methods in Optimal Control Theory, Marcel Dekker, N.Y., 1996 | MR | Zbl

[20] Antipina N. V., Dykhta V. A., “Lineinye funktsii Lyapunova–Krotova i dostatochnye usloviya optimalnosti v forme printsipa maksimuma”, Izv. vuzov. Matematika, 2002, no. 12, 11–22 | MR | Zbl

[21] Dykhta V. A., “Neravenstvo Lyapunova–Krotova i dostatochnye usloviya v optimalnom upravlenii”, Sovr. matematika i ee prilozheniya. Itogi nauki i tekhniki, 110, 2006, 76–108

[22] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matematika, 2009, no. 1, 3–43 | MR | Zbl

[23] Milyutin A. A., Osmolovskii N. P., Calculus of Variations and Optimal Control, Amer. Math. Soc., Providence, 1998 | MR | Zbl

[24] Baturin V. A., Dykhta V. A., Moskalenko A. I. i dr., Metody resheniya zadach teorii upravleniya na osnove printsipa rasshireniya, Nauka, Novosibirsk, 1990 | Zbl

[25] Dykhta V. A., “Invariantnost, dostizhimost i optimalnost v upravlyaemykh dinamicheskikh sistemakh”, Metody optimizatsii i ikh prilozheniya, Tr. 14 Baikal. mezhdunar. shkoly-seminara, v. 2, 2008, 35–47

[26] Dykhta V. A., “Nekotorye prilozheniya neravenstv Gamiltona–Yakobi v optimalnom upravlenii”, Izv. Irkutsk. gos. un-ta. Ser. Matematika, 2 (2009), 183–196

[27] Dykhta V. A., Samsonyuk O. N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Fizmatlit, M., 2003 | MR | Zbl

[28] Dykhta V. A., Antipina N. V., “Dostatochnye usloviya optimalnosti dlya zadach impulsnogo upravleniya”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 4, 76–83 | MR

[29] Clarke F. H., Nour C., “Nonconvex duality in optimal control”, SIAM J. Control Optim., 43:6 (2005), 2036–2048 | DOI | MR | Zbl

[30] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[31] Zelikina L. F., “Mnogomernyi sintez i teoremy o magistrali v zadachakh optimalnogo upravleniya”, Veroyatnostnye problemy upravleniya v ekonomike, Nauka, M., 1977, 33–114 | MR

[32] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR