The best-on-average quasiconformal mappings
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 70-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We seek the best-on-average quasiconformal mappings as the extremals of the functional equal to the integral of the conformality squared and multiplied by a particular weight. The inverse mapping to an extremal is an extremal of the same functional. We obtain necessary and sufficient conditions for the ellipticity in the sense of Petrovskii of the system of Euler equations for the extremal. We prove the local unique solvability of boundary problems for this system in the two-dimensional case. In the general case we prove the unique solvability of boundary problems for the system linearized at the identity mapping.
Keywords: quasiconformal mapping, extremal of a functional, embedding theorem, ellipticity in the sense of Petrovskii.
@article{SJIM_2011_14_1_a6,
     author = {R. M. Garipov},
     title = {The best-on-average quasiconformal mappings},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {70--82},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a6/}
}
TY  - JOUR
AU  - R. M. Garipov
TI  - The best-on-average quasiconformal mappings
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 70
EP  - 82
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a6/
LA  - ru
ID  - SJIM_2011_14_1_a6
ER  - 
%0 Journal Article
%A R. M. Garipov
%T The best-on-average quasiconformal mappings
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 70-82
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a6/
%G ru
%F SJIM_2011_14_1_a6
R. M. Garipov. The best-on-average quasiconformal mappings. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 70-82. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a6/

[1] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR

[2] Garipov R. M., “Postroenie raznostnykh setok, blizkikh k konformnym”, Mezhdunar. konf., posvyasch. 100-letiyu so dnya rozhdeniya S. L. Soboleva, Tez. dokl., Novosibirsk, 2008, 467

[3] Ovsyannikov L. V., “O beskonechnykh gruppakh otobrazhenii, zadavaemykh differentsialnymi uravneniyami”, Dokl. AN SSSR, 148:1 (1963), 36–39 | Zbl

[4] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO RAN SSSR, Novosibirsk, 1962

[5] Strugov Yu. F., Sychev A. V., “Razlichnye klassy prostranstvennykh otobrazhenii, kvazikonformnykh v srednem”, Algebra i matematicheskii analiz, Mezhvuzovskii sb., Izd-vo NGU, Novosibirsk, 1990, 104–125 | MR

[6] Strugov Yu. F., Sychev A. V., “O razlichnykh klassakh prostranstvennykh otobrazhenii, kvazikonformnykh v srednem”, Vestn. Novosib. otdeleniya PANI, 2002, no. 7, 14–19

[7] Garanzha V. A., “Upravlenie metricheskimi svoistvami prostranstvennykh otobrazhenii”, Zhurn. vychisl. matematiki i mat. fiziki, 43:6 (2003), 818–829 | MR | Zbl

[8] Petrovskii I. G., “O sistemakh differentsialnykh uravnenii, vse resheniya kotorykh analitichny”, Dokl. AN SSSR, 17 (1937), 339–342

[9] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, Izd-vo inostr. lit., M., 1962

[10] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[11] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl