Quasistationary solutions in economic systems with variable technology
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stationary solutions play an important role in the studies of models of economic dynamics with constant parameters. We select the two classes of dynamical systems with variable parameters and prove for them the existence of special solutions preserving some properties of stationary solutions (for instance, uniform boundedness).
Keywords: model of economic dynamics, stationary solution, variable parameters, quasistationary solutions, hyperbolic points, stable development.
@article{SJIM_2011_14_1_a4,
     author = {N. P. Dement'ev},
     title = {Quasistationary solutions in economic systems with variable technology},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {46--55},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a4/}
}
TY  - JOUR
AU  - N. P. Dement'ev
TI  - Quasistationary solutions in economic systems with variable technology
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 46
EP  - 55
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a4/
LA  - ru
ID  - SJIM_2011_14_1_a4
ER  - 
%0 Journal Article
%A N. P. Dement'ev
%T Quasistationary solutions in economic systems with variable technology
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 46-55
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a4/
%G ru
%F SJIM_2011_14_1_a4
N. P. Dement'ev. Quasistationary solutions in economic systems with variable technology. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 46-55. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a4/

[1] Makarov V. L., Rubinov A. M., Matematicheskaya teoriya ekonomicheskoi dinamiki i ravnovesiya, Nauka, M., 1973 | MR

[2] Danilov V. I., “Optimalnoe razvitie ekonomiki s peremennoi tekhnologiei”, Metody funktsionalnogo analiza v matematicheskoi ekonomike, Nauka, M., 1978, 3–22 | MR

[3] McKenzie L., “Optimal Economic Growth, Turnpike Theorems and Comparative Dynamics”, Handbook of Mathematical Economics, v. 3, North-Holland, Amsterdam, 1986, 1281–1355 | MR

[4] Dementev N. P., “Regulyarnye traektorii v modelyakh ekonomicheskoi dinamiki so slabo izmenyayuscheisya tekhnologiei”, Analiz i modelirovanie ekonomicheskikh protsessov perekhodnogo perioda v Rossii, EKOR, Novosibirsk, 1996, 180–191

[5] Dementev N. P., Magistralnye svoistva modelei ekonomicheskoi dinamiki s potrebleniem, Nauka, Novosibirsk, 1991

[6] Dementev N. P., Cheresiz V. M., “Kvazistatsionarnye resheniya v differentsialnykh modelyakh ekonomiki s medlenno izmenyayuschimisya parametrami”, Sib. zhurn. industr. matematiki, 5:2(10) (2002), 70–93 | MR | Zbl

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR

[8] Matematicheskaya entsiklopediya, v. 1, Sovetskaya entsiklopediya, M., 1977, 1150 pp.