On bending an elastic plate with a~delaminated thin rigid inclusion
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 114-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the problem of bending an elastic plate with a thin rigid inclusion which may delaminate and form a crack. We find a system of boundary conditions valid on the faces of the crack and prove the existence of a solution. The problem of bending a plate with a volume rigid inclusion is also considered. We establish the convergence of solutions of this problem to a solution to the original problem as the size of the volume rigid inclusion tends to zero.
Keywords: plate, bending, rigid inclusion, crack, delamination.
@article{SJIM_2011_14_1_a10,
     author = {A. M. Khludnev},
     title = {On bending an elastic plate with a~delaminated thin rigid inclusion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {114--126},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a10/}
}
TY  - JOUR
AU  - A. M. Khludnev
TI  - On bending an elastic plate with a~delaminated thin rigid inclusion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 114
EP  - 126
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a10/
LA  - ru
ID  - SJIM_2011_14_1_a10
ER  - 
%0 Journal Article
%A A. M. Khludnev
%T On bending an elastic plate with a~delaminated thin rigid inclusion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 114-126
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a10/
%G ru
%F SJIM_2011_14_1_a10
A. M. Khludnev. On bending an elastic plate with a~delaminated thin rigid inclusion. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 114-126. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a10/

[1] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[2] Khludnev A. M., “Teoriya treschin s vozmozhnym kontaktom beregov”, Uspekhi mekhaniki, 3:4 (2005), 41–82

[3] Hoffmann K.-H., Khludnev A. M., “Fictitious domain method for the Signorini problem in a linear elasticity”, Adv. Math. Sci. Appl., 14:2 (2004), 465–481 | MR | Zbl

[4] Rudoi E. M., “Differentsirovanie funktsionalov energii v trekhmernoi teorii uprugosti dlya tel, soderzhaschikh poverkhnostnye treschiny”, Sib. zhurn. industr. matematiki, 8:1 (2005), 106–116 | MR

[5] Rudoi E. M., “Differentsirovanie funktsionalov energii v zadache o krivolineinoi treschine s vozmozhnym kontaktom beregov”, Izvestiya RAN. MTT, 2007, no. 6, 113–127

[6] Kovtunenko V. A., “Invariantnye integraly energii dlya nelineinoi zadachi o treschine s vozmozhnym kontaktom beregov”, Prikl. matematika i mekhanika, 67:1 (2003), 99–110 | MR | Zbl

[7] Loigering G., Khludnev A. M., “O ravnovesii uprugikh tel, soderzhaschikh tonkie zhestkie vklyucheniya”, Dokl. AN, 43:1 (2010), 1–4 | MR

[8] Khludnev A. M., Zadacha o treschine na granitsezhestkogo vklyucheniya v uprugoi plastine, Preprint No 1-09, In-t gidrodinamiki SO RAN, Novosibirsk, 2009, 18 pp.

[9] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadachi dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4(40) (2009), 92–105 | MR

[10] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestnik NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | MR

[11] Khludnev A. M., Novotny A. A., Sokolowski J., Zochowski A., “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mechanics and Physics of Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl

[12] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[13] Grisvard P., Singularities in Boundary Value Problems, Springer-Verl., Masson, 1992 | MR | Zbl