A generalization of the Schwarz--Christoffel formula
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 109-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a formula for mapping the upper half-plane conformally onto a polygonal region, generalizing the Schwarz–Christoffel formula to the case of a countable set of vertices. We indicate a connection of the construction of this mapping to the solution of the Hilbert boundary value problem with a countable set of discontinuity points of the coefficients and polynomial singularity of the index.
Keywords: the Schwarz–Christoffel formula, boundary conditions, index of the problem.
@article{SJIM_2010_13_4_a9,
     author = {R. B. Salimov and P. L. Shabalin},
     title = {A generalization of the {Schwarz--Christoffel} formula},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {109--117},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a9/}
}
TY  - JOUR
AU  - R. B. Salimov
AU  - P. L. Shabalin
TI  - A generalization of the Schwarz--Christoffel formula
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 109
EP  - 117
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a9/
LA  - ru
ID  - SJIM_2010_13_4_a9
ER  - 
%0 Journal Article
%A R. B. Salimov
%A P. L. Shabalin
%T A generalization of the Schwarz--Christoffel formula
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 109-117
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a9/
%G ru
%F SJIM_2010_13_4_a9
R. B. Salimov; P. L. Shabalin. A generalization of the Schwarz--Christoffel formula. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 109-117. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a9/

[1] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[2] Bezrodnykh S. I., Vlasov V. I., “Singulyarnaya zadacha Rimana–Gilberta na mnogougolnikakh i ee prilozheniya”, Tezisy dokl. Mezhdunarodnoi konf. “Tikhonov i sovremennaya matematika”, M., 2006, 32

[3] Salimov R. B., Shabalin P. L., “Otobrazhenie poluploskosti na mnogougolnik s beskonechnym chislom vershin”, Izv. vuzov. Matematika, 2009, no. 10, 76–80 | MR | Zbl

[4] Salimov R. B., Shabalin P. L., “Obratnaya zadacha M. A. Lavrenteva ob otobrazhenii poluploskosti na mnogougolnik v sluchae beskonechnogo chisla vershin”, Izvestiya Saratov. un-ta. Ser. Matematika. Mekhanika. Informatika, 10:1 (2010), 23–31

[5] Salimov R. B., Shabalin P. L., “Zadacha Gilberta. Sluchai beskonechnogo mnozhestva tochek razryva koeffitsientov”, Sib. mat. zhurn., 49:4 (2008), 898–915 | MR | Zbl

[6] Salimov R. B., Shabalin P. L., “K resheniyu zadachi Gilberta s beskonechnym indeksom”, Mat. zametki, 73:5 (2003), 724–734 | MR | Zbl

[7] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[8] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986 | MR | Zbl