A generalization of the Schwarz--Christoffel formula
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 109-117

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a formula for mapping the upper half-plane conformally onto a polygonal region, generalizing the Schwarz–Christoffel formula to the case of a countable set of vertices. We indicate a connection of the construction of this mapping to the solution of the Hilbert boundary value problem with a countable set of discontinuity points of the coefficients and polynomial singularity of the index.
Keywords: the Schwarz–Christoffel formula, boundary conditions, index of the problem.
@article{SJIM_2010_13_4_a9,
     author = {R. B. Salimov and P. L. Shabalin},
     title = {A generalization of the {Schwarz--Christoffel} formula},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {109--117},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a9/}
}
TY  - JOUR
AU  - R. B. Salimov
AU  - P. L. Shabalin
TI  - A generalization of the Schwarz--Christoffel formula
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 109
EP  - 117
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a9/
LA  - ru
ID  - SJIM_2010_13_4_a9
ER  - 
%0 Journal Article
%A R. B. Salimov
%A P. L. Shabalin
%T A generalization of the Schwarz--Christoffel formula
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 109-117
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a9/
%G ru
%F SJIM_2010_13_4_a9
R. B. Salimov; P. L. Shabalin. A generalization of the Schwarz--Christoffel formula. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 109-117. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a9/