On some inverse problems for elliptic equations and systems
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 83-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the inverse problems for determining the right-hand side of a special form and the solution for elliptic systems, including a series of elasticity systems. On the boundary of the region the solution satisfies either the Dirichlet conditions or the mixed Dirichlet–Neuman conditions. On a set of planes we allow the normal derivatives of the solution to have discontinuities of the first kind. The gluing conditions on the discontinuity surface are analogous to the continuity conditions for the displacement and stress fields for horizontally layered medium. The overdetermination conditions are integral (the average of the solution over some region is given) or local (the solution is specified on some lines). For these problems we study solvability conditions and the Fredholm property.
Keywords: elliptic system, elasticity theory, inverse problem, the Fredholm property.
@article{SJIM_2010_13_4_a7,
     author = {S. G. Pyatkov},
     title = {On some inverse problems for elliptic equations and systems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a7/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - On some inverse problems for elliptic equations and systems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 83
EP  - 96
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a7/
LA  - ru
ID  - SJIM_2010_13_4_a7
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T On some inverse problems for elliptic equations and systems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 83-96
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a7/
%G ru
%F SJIM_2010_13_4_a7
S. G. Pyatkov. On some inverse problems for elliptic equations and systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 83-96. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a7/

[1] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[2] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, N.Y., 1999 | MR

[3] Isakov V., Inverse Problems for Partial Differential Equations, Springer-Verl., Berlin, 2006 | MR | Zbl

[4] Belov Ya. Ya., Inverse Problems for Parabolic Equations, VSP, Utrecht, 2002 | Zbl

[5] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Nauka, Novosibirsk, 2009

[6] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[7] Kozhanov A. I., Uravneniya sostavnogo tipa i obratnye zadachi dlya ellipticheskikh i parabolicheskikh uravnenii, preprint No 54, In-t matematiki SO RAN, Novosibirsk, 1998, 29 pp. | MR

[8] Eskin G., Ralston J., “On the inverse boundary value problem for linear isotropic elasticity”, Inverse Problems, 18:3 (2002), 907–921 | DOI | MR | Zbl

[9] Nakamura G., Uhlmann G., “Global uniqueness for an inverse boundary value problem arising in elasticity”, Invent. Math., 152 (2003), 205–207 | DOI | MR

[10] Alessandrini G., Cabib E., “Determining the anisotropic traction state in a membrane by a boundary measurement”, Inverse Problems and Imaging, 1:3 (2007), 437–442 | MR | Zbl

[11] Bukhgeim A. L., Dyatlov G. V., Kardakov V. B., Tantserev E. V., “Edinstvennost v odnoi zadache teorii uprugosti”, Sib. mat. zhurn., 45:4 (2004), 747–757 | MR | Zbl

[12] Cheng J., Xu D. H., Yamomoto M., “The local conditional stability estimate for an inverse contact problem in the elasticity”, J. Elasticity, 65:1–3 (2001), 33–47 | DOI | MR | Zbl

[13] Karchevskii A. L., “Algoritm vosstanovleniya uprugikh postoyannykh anizotropnogo sloya, nakhodyaschegosya v izotropnoi gorizontalno-sloistoi srede”, Sib. elektronnye mat. izvestiya, 4 (2007), 20–51 http://semr.math.nsc.ru/v4/p20-51.pdf | MR | Zbl

[14] Ladyzhenskaya O. A., Rivkind V. Ya., Uraltseva N. N., “O klassicheskoi razreshimosti zadach difraktsii”, Tr. MIAN, 92, 1966, 116–146 | MR | Zbl

[15] Oleinik O. A., “Kraevye zadachi dlya uravnenii ellipticheskogo i parabolicheskogo tipa s razryvnymi koeffitsientami”, Izvestiya AN SSSR. Ser. matem., 25:1 (1961), 3–20 | MR | Zbl

[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[17] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR

[18] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[19] Grisvard P., “Equations differentielles abstraites”, Ann. Sci. Ecole Norm. Super. (4), 2:3 (1969), 311–395 | MR | Zbl

[20] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1978

[21] Amann H., “Compact embeddings of vector-valued Sobolev and Besov spaces”, Glas. Mat., 35:55 (2000), 161–177 | MR | Zbl