Functional equations in pseudo-Euclidean geometry
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 38-51
Cet article a éte moissonné depuis la source Math-Net.Ru
We solve functional equations on the metrics of all phenomenologically symmetric geometries in dimension $n+1$ that extend the metric of the $n$-dimensional pseudo-Euclidean geometry.
Keywords:
functional equation, phenomenologically symmetric geometry.
@article{SJIM_2010_13_4_a3,
author = {V. A. Kyrov},
title = {Functional equations in {pseudo-Euclidean} geometry},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {38--51},
year = {2010},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a3/}
}
V. A. Kyrov. Functional equations in pseudo-Euclidean geometry. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 38-51. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a3/
[1] Lev V. Kh., “Trekhmernye geometrii v teorii fizicheskikh struktur”, Vychisl. sistemy, 125, 1985, 90–103
[2] Kyrov V. A., “Shestimernye algebryLi grupp dvizhenii trekhmernykh fenomenologicheski simmetrichnykh geometrii”, prilozhenie k knige: Mikhailichenko G. G., Polimetricheskie geometrii, izd. Novosib. gos. un-ta, Novosibirsk, 2001, 116–143
[3] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl
[4] Mikhailichenko G. G., “O gruppovoi i fenomenologicheskoi simmetriyakh v geometrii”, Dokl. AN SSSR, 269:2 (1983), 284–288 | MR
[5] Mikhailichenko G. G., Polimetricheskie geometrii, izd. Novosib. gos. un-ta, Novosibirsk, 2001