Functional equations in pseudo-Euclidean geometry
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 38-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve functional equations on the metrics of all phenomenologically symmetric geometries in dimension $n+1$ that extend the metric of the $n$-dimensional pseudo-Euclidean geometry.
Keywords: functional equation, phenomenologically symmetric geometry.
@article{SJIM_2010_13_4_a3,
     author = {V. A. Kyrov},
     title = {Functional equations in {pseudo-Euclidean} geometry},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {38--51},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a3/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Functional equations in pseudo-Euclidean geometry
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 38
EP  - 51
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a3/
LA  - ru
ID  - SJIM_2010_13_4_a3
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Functional equations in pseudo-Euclidean geometry
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 38-51
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a3/
%G ru
%F SJIM_2010_13_4_a3
V. A. Kyrov. Functional equations in pseudo-Euclidean geometry. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 38-51. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a3/

[1] Lev V. Kh., “Trekhmernye geometrii v teorii fizicheskikh struktur”, Vychisl. sistemy, 125, 1985, 90–103

[2] Kyrov V. A., “Shestimernye algebryLi grupp dvizhenii trekhmernykh fenomenologicheski simmetrichnykh geometrii”, prilozhenie k knige: Mikhailichenko G. G., Polimetricheskie geometrii, izd. Novosib. gos. un-ta, Novosibirsk, 2001, 116–143

[3] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[4] Mikhailichenko G. G., “O gruppovoi i fenomenologicheskoi simmetriyakh v geometrii”, Dokl. AN SSSR, 269:2 (1983), 284–288 | MR

[5] Mikhailichenko G. G., Polimetricheskie geometrii, izd. Novosib. gos. un-ta, Novosibirsk, 2001