The flow distribution problem in a~nonclassical statement
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 15-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the results of study of a nonclassical flow distribution problem, including the existence and uniqueness of its solution. Unlike in the classical flow distribution problem traditionally considered in the theory of hydraulic chains, the variables in the nonclassical problems can be the expenses of the medium being transported in or out at the separate nodes of the system and the pressure increments on some arcs. Meanwhile, in contrast to the classical flow distribution problem we may be given the pressure at some nodes, as well as the expenses and the loss of pressure on some arcs.
Keywords: flow distribution problem, system of equations, initial and dual optimization problems.
@article{SJIM_2010_13_4_a1,
     author = {S. P. Epifanov and V. I. Zorkal'tsev},
     title = {The flow distribution problem in a~nonclassical statement},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a1/}
}
TY  - JOUR
AU  - S. P. Epifanov
AU  - V. I. Zorkal'tsev
TI  - The flow distribution problem in a~nonclassical statement
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 15
EP  - 24
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a1/
LA  - ru
ID  - SJIM_2010_13_4_a1
ER  - 
%0 Journal Article
%A S. P. Epifanov
%A V. I. Zorkal'tsev
%T The flow distribution problem in a~nonclassical statement
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 15-24
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a1/
%G ru
%F SJIM_2010_13_4_a1
S. P. Epifanov; V. I. Zorkal'tsev. The flow distribution problem in a~nonclassical statement. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 15-24. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a1/

[1] Merenkov A. P., Khasilev V. Ya., Teoriya gidravlicheskikh tsepei, Nauka, M., 1985 | Zbl

[2] A. P. Merenkov, E. V. Sennova, S. V. Sumarokov i dr. (red.), Matematicheskoe modelirovanie i optimizatsiya sistem teplo-, vodo-, nefte- i gazosnabzheniya, Nauka, Novosibirsk, 1992

[3] Sukharev M. G., “O vybore metoda pri raschete na EVM techenii po setyam”, Kibernetika, 1969, no. 6, 9–11

[4] Epifanov S. P., Zorkaltsev V. I., “Prilozhenie teorii dvoistvennosti k modelyam potokoraspredeleniya”, Vychislitelnye tekhnologii, 14:1 (2009), 67–80 | MR

[5] Zorkaltsev V. I., Khamisov O. V., Ravnovesnye modeli v ekonomike i energetike, Nauka, Novosibirsk, 2006

[6] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[7] Pshenichnyi B. N., “Raschet energeticheskikh setei na EVM”, Zhurn. vychisl. matematiki i mat. fiziki, 1962, no. 5, 942–947