On an involutive automorphism of the Burnside group $B_0(2,5)$
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 68-75
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the centralizer of the involutive automorphism of the Burnside group $B_0(2,5)$ taking the generators of $B_0(2,5)$ to their inverses. We find generators for the centralizer and compute its order, solvability length, and nilpotency length.
Keywords:
Burnside problem.
@article{SJIM_2010_13_3_a8,
author = {A. A. Kuznetsov and K. A. Filippov},
title = {On an involutive automorphism of the {Burnside} group $B_0(2,5)$},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {68--75},
year = {2010},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a8/}
}
A. A. Kuznetsov; K. A. Filippov. On an involutive automorphism of the Burnside group $B_0(2,5)$. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 68-75. http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a8/
[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl
[2] Kostrikin A. I., “O probleme Bernsaida”, Dokl. AN SSSR, 119:6 (1958), 1081–1084 | MR | Zbl
[3] Zelmanov E. I., “Reshenie oslablennoi problemy Bernsaida dlya 2-grupp”, Mat. sb., 182:4 (1991), 568–592 | MR | Zbl
[4] Hall P., Higman G., “On the p-length of $p$-soluble groups and reductions theorems for Burnside problem”, Proc. London Math. Soc., 6:3 (1956), 1–42 | DOI | MR | Zbl
[5] Havas G., Wall G., Wamsley J., “The two generator restricted Burnside group of exponent five”, Bull. Austral. Math. Soc., 10 (1974), 459–470 | DOI | MR | Zbl
[6] Kurosh A. G., Teoriya grupp, Lan, SPb., 2005