On pointwise complete pairs of linear transformations
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 58-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the pointwise completeness of an $n$th order constant-coefficient system under the assumption that the matrices of the system split into same-size square blocks so that the collection of all blocks embeds into a finite dimensional associative division algebra; the block rank of the passive matrix is at most 2.
Keywords: pointwise completeness of a system of ODE with delay.
@article{SJIM_2010_13_3_a7,
     author = {A. A. Korobov},
     title = {On pointwise complete pairs of linear transformations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {58--67},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a7/}
}
TY  - JOUR
AU  - A. A. Korobov
TI  - On pointwise complete pairs of linear transformations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 58
EP  - 67
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a7/
LA  - ru
ID  - SJIM_2010_13_3_a7
ER  - 
%0 Journal Article
%A A. A. Korobov
%T On pointwise complete pairs of linear transformations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 58-67
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a7/
%G ru
%F SJIM_2010_13_3_a7
A. A. Korobov. On pointwise complete pairs of linear transformations. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 58-67. http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a7/