Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2010_13_3_a15, author = {E. V. Chistyakova}, title = {Nonlocal solvability theorems for systems of differential-algebraic equations for nonsteady hydraulic chains}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {140--150}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a15/} }
TY - JOUR AU - E. V. Chistyakova TI - Nonlocal solvability theorems for systems of differential-algebraic equations for nonsteady hydraulic chains JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2010 SP - 140 EP - 150 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a15/ LA - ru ID - SJIM_2010_13_3_a15 ER -
%0 Journal Article %A E. V. Chistyakova %T Nonlocal solvability theorems for systems of differential-algebraic equations for nonsteady hydraulic chains %J Sibirskij žurnal industrialʹnoj matematiki %D 2010 %P 140-150 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a15/ %G ru %F SJIM_2010_13_3_a15
E. V. Chistyakova. Nonlocal solvability theorems for systems of differential-algebraic equations for nonsteady hydraulic chains. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 140-150. http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a15/
[1] Brenan K. E., Campbell S. L., Petzold L. R., Numerical Solution of Initial-Value Problems in Differential. Algebraic Equations, Classics in Applied mathematics, 14, SIAM, Philadelphia, 1996 | MR | Zbl
[2] Merenkov A. P., Khasilev V. Ya., Teoriya gidravlicheskikh tsepei, Nauka, M., 1985 | Zbl
[3] Balyshev O. A., Tairov E. A., Analiz perekhodnykh i statsionarnykh protsessov v truboprovodnykh sistemakh (teoreticheskie i eksperimentalnye aspekty), Nauka, Novosibirsk, 1998
[4] Boyarintsev Yu. E., Regulyarnye i singulyarnye sistemy lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, Novosibirsk, 1980 | MR | Zbl
[5] Griepentrog E., Maerz R., Differential-algebriac equations and their numerical treatment, BSB, Leipzig, 1986 | Zbl
[6] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii.Zhestkie i differentsialno- algebraicheskie zadachi, Mir, M., 1999
[7] Rheinboldt W. C., Raiber P. T., Theoretical and numerical analysis of differential algebaric equations, Handbook of Numerical Analysis, 8, Amsterdam, 2002 | Zbl
[8] Kunkel P., Mehrmann V., Differential-algebraic Equations: Analysis and Numerical Solution, Europ. Math. Soc., Zürich, 2006 | MR | Zbl
[9] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR
[10] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996 | MR | Zbl
[11] Bulatov M. V., “O preobrazovanii algebro-differentsialnykh sistem uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 34:3 (1994), 360–372 | MR | Zbl
[12] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[13] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1964 | MR
[14] Chistyakova E. V., Chistyakov V. F., “K voprosu o suschestvovanii reshenii differentsialno-algebraicheskikh uravnenii”, Sib. zhurn. industr. matematiki, 9:3(27) (2006), 148–158 | MR
[15] Chistyakova E. V., “Differentsialno-algebraicheskie uravneniya s malym nelineinym chlenom”, Differents. uravneniya, 45:9 (2009), 1–4 | MR
[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Lan, SPb., 1997
[17] Chistyakova E. V., “Neiteratsionnye metody resheniya nelineinykh differentsialno-algebraicheskikh uravnenii indeksa 1”, Optimizatsiya, upravlenie, intellekt, 2004, no. 2(8), 232–241 | MR
[18] Krasnov M. L., Integralnye uravneniya, Nauka, M., 1975 | MR | Zbl
[19] Apartsin A. S., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999
[20] Kulikov G. Yu., “Chislennoe reshenie zadachi Koshi dlya sistemy differentsialno-algebraicheskikh uravnenii s pomoschyu neyavnykh metodov Runge–Kutta s netrivialnym prediktorom”, Zhurn. vychisl. matematiki i mat. fiziki, 38:1 (1998), 68–84 | MR | Zbl