Nonlocal solvability theorems for systems of differential-algebraic equations for nonsteady hydraulic chains
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 140-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove nonlocal solvability theorems of initial problems for systems of differential-algebraic equations and indicate a criterion for the asymptotic stability of their stationary points. Using these results we study a mathematical model of a nonsteady hydraulic chain.
Keywords: differential-algebraic equation, stationary point
Mots-clés : hydraulic chain.
@article{SJIM_2010_13_3_a15,
     author = {E. V. Chistyakova},
     title = {Nonlocal solvability theorems for systems of differential-algebraic equations for nonsteady hydraulic chains},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {140--150},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a15/}
}
TY  - JOUR
AU  - E. V. Chistyakova
TI  - Nonlocal solvability theorems for systems of differential-algebraic equations for nonsteady hydraulic chains
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 140
EP  - 150
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a15/
LA  - ru
ID  - SJIM_2010_13_3_a15
ER  - 
%0 Journal Article
%A E. V. Chistyakova
%T Nonlocal solvability theorems for systems of differential-algebraic equations for nonsteady hydraulic chains
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 140-150
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a15/
%G ru
%F SJIM_2010_13_3_a15
E. V. Chistyakova. Nonlocal solvability theorems for systems of differential-algebraic equations for nonsteady hydraulic chains. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 140-150. http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a15/

[1] Brenan K. E., Campbell S. L., Petzold L. R., Numerical Solution of Initial-Value Problems in Differential. Algebraic Equations, Classics in Applied mathematics, 14, SIAM, Philadelphia, 1996 | MR | Zbl

[2] Merenkov A. P., Khasilev V. Ya., Teoriya gidravlicheskikh tsepei, Nauka, M., 1985 | Zbl

[3] Balyshev O. A., Tairov E. A., Analiz perekhodnykh i statsionarnykh protsessov v truboprovodnykh sistemakh (teoreticheskie i eksperimentalnye aspekty), Nauka, Novosibirsk, 1998

[4] Boyarintsev Yu. E., Regulyarnye i singulyarnye sistemy lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, Novosibirsk, 1980 | MR | Zbl

[5] Griepentrog E., Maerz R., Differential-algebriac equations and their numerical treatment, BSB, Leipzig, 1986 | Zbl

[6] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii.Zhestkie i differentsialno- algebraicheskie zadachi, Mir, M., 1999

[7] Rheinboldt W. C., Raiber P. T., Theoretical and numerical analysis of differential algebaric equations, Handbook of Numerical Analysis, 8, Amsterdam, 2002 | Zbl

[8] Kunkel P., Mehrmann V., Differential-algebraic Equations: Analysis and Numerical Solution, Europ. Math. Soc., Zürich, 2006 | MR | Zbl

[9] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[10] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996 | MR | Zbl

[11] Bulatov M. V., “O preobrazovanii algebro-differentsialnykh sistem uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 34:3 (1994), 360–372 | MR | Zbl

[12] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[13] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1964 | MR

[14] Chistyakova E. V., Chistyakov V. F., “K voprosu o suschestvovanii reshenii differentsialno-algebraicheskikh uravnenii”, Sib. zhurn. industr. matematiki, 9:3(27) (2006), 148–158 | MR

[15] Chistyakova E. V., “Differentsialno-algebraicheskie uravneniya s malym nelineinym chlenom”, Differents. uravneniya, 45:9 (2009), 1–4 | MR

[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Lan, SPb., 1997

[17] Chistyakova E. V., “Neiteratsionnye metody resheniya nelineinykh differentsialno-algebraicheskikh uravnenii indeksa 1”, Optimizatsiya, upravlenie, intellekt, 2004, no. 2(8), 232–241 | MR

[18] Krasnov M. L., Integralnye uravneniya, Nauka, M., 1975 | MR | Zbl

[19] Apartsin A. S., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999

[20] Kulikov G. Yu., “Chislennoe reshenie zadachi Koshi dlya sistemy differentsialno-algebraicheskikh uravnenii s pomoschyu neyavnykh metodov Runge–Kutta s netrivialnym prediktorom”, Zhurn. vychisl. matematiki i mat. fiziki, 38:1 (1998), 68–84 | MR | Zbl