Degenerate high-order differential equations of a~special kind in Banach spaces and their applications
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 126-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using generalized function methods in Banach spaces, we study the solvability of Cauchy problems for third or fourth order differential equations with a Fredholm operator at the highest derivative in the class of distributions with support bounded on the left. In terms of the generalized Jordan structure of the degenerate principal part of these equations we construct fundamental operator functions that correspond to the differential operators and use them to recover generalized solutions, prove uniqueness pf the latter, and study relations with the classical solutions. We apply the results to two initial-boundary value problems for nonclassical equations of mathematical physics. We study the Cauchy–Dirichlet problem for the generalized electric potential equation and the thermoelastic plate equation.
Keywords: Banach spaces, Fredholm operator, fundamental operator functions.
Mots-clés : Jordan tuples, distributions
@article{SJIM_2010_13_3_a14,
     author = {M. V. Falaleev and A. V. Krasnik and S. S. Orlov},
     title = {Degenerate high-order differential equations of a~special kind in {Banach} spaces and their applications},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {126--139},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a14/}
}
TY  - JOUR
AU  - M. V. Falaleev
AU  - A. V. Krasnik
AU  - S. S. Orlov
TI  - Degenerate high-order differential equations of a~special kind in Banach spaces and their applications
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 126
EP  - 139
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a14/
LA  - ru
ID  - SJIM_2010_13_3_a14
ER  - 
%0 Journal Article
%A M. V. Falaleev
%A A. V. Krasnik
%A S. S. Orlov
%T Degenerate high-order differential equations of a~special kind in Banach spaces and their applications
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 126-139
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a14/
%G ru
%F SJIM_2010_13_3_a14
M. V. Falaleev; A. V. Krasnik; S. S. Orlov. Degenerate high-order differential equations of a~special kind in Banach spaces and their applications. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 126-139. http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a14/

[1] Falaleev M. V., “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v banakhovykh prostranstvakh”, Sib. mat. zhurn., 41:5 (2000), 1167–1182 | MR | Zbl

[2] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[3] Falaleev M. V., Grazhdantseva E. Yu., “Fundamentalnye operator-funktsii vyrozhdennykh differentsialnykh i differentsialno-raznostnykh operatorov s neterovym operatorom v glavnoi chasti v banakhovykh prostranstvakh”, Sib. mat. zhurn., 46:6 (2005), 1393–1406 | MR | Zbl

[4] Rivera J. E. M., Fatori L. H., “Regularizing Properties and Propagations of Singularities for Thermoelastic Plates”, Math. Meth. Appl. Sci., 21 (1998), 797–821 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmalit, M., 2007 | Zbl

[6] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2002

[7] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR | Zbl

[8] Loginov B. V., Rusak Yu. B., “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii v chastnykh proizvodnykh i ikh prilozheniya, FAN, Tashkent, 1978, 133–148 | MR