Existence and stability of summable generalized solutions in a~mathematical model of a~catalytic process in a~boiling layer
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 54-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a system of first order partial differential equations describing a catalytic process in a boiling layer, we consider a mixed problem in the half-strip $ 0\le x\le h$, $t\ge0$. We prove the existence and uniqueness of a bounded summable generalized solution and study its stability. We prove the stabilization as $t\to\infty$ of the values of some physically meaningful functionals of solutions.
Keywords: mixed problem, generalized solution, stability.
@article{SJIM_2010_13_2_a5,
     author = {V. P. Gaevoǐ},
     title = {Existence and stability of summable generalized solutions in a~mathematical model of a~catalytic process in a~boiling layer},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {54--68},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a5/}
}
TY  - JOUR
AU  - V. P. Gaevoǐ
TI  - Existence and stability of summable generalized solutions in a~mathematical model of a~catalytic process in a~boiling layer
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 54
EP  - 68
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a5/
LA  - ru
ID  - SJIM_2010_13_2_a5
ER  - 
%0 Journal Article
%A V. P. Gaevoǐ
%T Existence and stability of summable generalized solutions in a~mathematical model of a~catalytic process in a~boiling layer
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 54-68
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a5/
%G ru
%F SJIM_2010_13_2_a5
V. P. Gaevoǐ. Existence and stability of summable generalized solutions in a~mathematical model of a~catalytic process in a~boiling layer. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 54-68. http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a5/

[1] Sheplev V. S., Mescheryakov V. D., “Matematicheskoe modelirovanie reaktorov s kipyaschim sloem katalizatora”, Matematicheskoe modelirovanie khimicheskikh reaktorov, Nauka, Novosibirsk, 1984, 44–66

[2] Pokrovskaya S. A., Gaevoi V. P., Sadovskaya E. M., Reshetnikov S. I., Sheplev V. S., “Matematicheskoe modelirovanie protsessov v kipyaschem sloe s uchetom nestatsionarnogo sostoyaniya katalizatora”, Matematicheskoe modelirovanie kataliticheskikh reaktorov, Nauka, Novosibirsk, 1989, 85–106

[3] Gaevoi V. P., “Analiz tsirkulyatsionnoi modeli kataliticheskogo protsessa v kipyaschem sloe”, Sib. zhurn. industr. matematiki, 7:4(20) (2004), 29–35 | MR | Zbl

[4] Lyulko N. A., “Suschestvovanie nestatsionarnogo resheniya odnoi matematicheskoi modeli kataliticheskogo protsessa v kipyaschem sloe”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo In-ta matematiki, Novosibirsk, 2002, 50–58

[5] Gaevoi V. P., “Ob odnoi nestatsionarnoi modeli kataliticheskogo protsessa v kipyaschem sloe”, Sib. mat. zhurn., 46:5 (2005), 1000–1010 | MR | Zbl

[6] Gaevoi V. P., “Suschestvovanie i ustoichivost nepreryvnogo obobschennogo resheniya nestatsionarnoi modeli kataliticheskogo protsessa v kipyaschem sloe”, Sib. zhurn. industr. matematiki, 10:4(32) (2007), 10–20 | MR

[7] Natanson I. P., Teoriya funktsii veschestvennogo peremennogo, Gostekhizdat, M., 1950