Rarefied gas flow near a~rotating cylinder
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 19-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the isothermic approximation with the second order correction relative to the Knudsen number, we construct an analytic solution to the problem of a circular cylinder rotating in a rarefied gas. As the basic equations we take a generalization of the BGK model of kinetic Boltzmann equations to the case of rotational degrees of freedom of gas molecules, and as a microscopic boundary value on the surface of the cylinder we takee an accommodation two-moment boundary value. We graph the mass velocity profile for the rarefied gas carried along by the rotating cylinder and make a comparison with the analogous results obtained using the diffuse reflection model, as well as the results of classical hydrodynamics.
Keywords: kinetic Boltzmann equation, analytic solutions to model kinetic equations, models of boundary values, accommodation coefficients.
@article{SJIM_2010_13_2_a2,
     author = {A. P. Andreev and A. V. Latyshev and V. N. Popov and A. A. Yushkanov},
     title = {Rarefied gas flow near a~rotating cylinder},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {19--29},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a2/}
}
TY  - JOUR
AU  - A. P. Andreev
AU  - A. V. Latyshev
AU  - V. N. Popov
AU  - A. A. Yushkanov
TI  - Rarefied gas flow near a~rotating cylinder
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 19
EP  - 29
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a2/
LA  - ru
ID  - SJIM_2010_13_2_a2
ER  - 
%0 Journal Article
%A A. P. Andreev
%A A. V. Latyshev
%A V. N. Popov
%A A. A. Yushkanov
%T Rarefied gas flow near a~rotating cylinder
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 19-29
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a2/
%G ru
%F SJIM_2010_13_2_a2
A. P. Andreev; A. V. Latyshev; V. N. Popov; A. A. Yushkanov. Rarefied gas flow near a~rotating cylinder. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 19-29. http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a2/

[1] Smirnov L. P., Chekalov V. V., “Medlennoe vraschenie sfery v ogranichennom ob'eme razrezhennogo gaza”, Izv. AN SSSR. Ser. Mekhanika zhidkogo gaza, 1978, no. 4, 117–124 | Zbl

[2] Poddoskin A. B., Yushkanov A. A., “Vraschenie sfery v neogranichennom gaze”, Izv. AN SSSR. Ser. Mekhanika zhidkogo gaza, 1997, no. 1, 165–171 | Zbl

[3] Latyshev A. V., Yushkanov A. A., “Analiticheskoe reshenie zadachi o skachke temperatury v gaze s vraschatelnymi stepenyami svobody”, Teor. i mat. fizika, 95:3 (1993), 530–540 | MR | Zbl

[4] Latyshev A. V., Yushkanov A. A., “Akkomodatsionnye dvukhmomentnye granichnye usloviya v zadachakh o teplovom i izotermicheskom skolzheniyakh”, Inzhenerno-fiz. zhurn., 74:3 (2001), 63–69 | MR

[5] Cherchinyani K., Matematicheskie metody v kineticheskoi teorii gazov, Mir, M., 1973 | MR

[6] Kogan M. N., Dinamika razrezhennogo gaza. Kineticheskaya teoriya, Nauka, M., 1967 | Zbl

[7] Cercignani C., “The Kramers problem for a not completely diffusing wall”, J. Math. Phys. Appl., 10:3 (1965), 568–586 | MR

[8] Latyshev A. V., Popov V. N., Yushkanov A. A., Neodnorodnye kineticheskie zadachi. Metod singulyarnykh integralnykh uravnenii, izd. Pomorsk. gos. un-ta, Arkhangelsk, 2004

[9] Latyshev A. V., Popov V. N., Yushkanov A. A., “Vychislenie skorosti skolzheniya razrezhennogo gaza vdol tverdoi sfericheskoi poverkhnosti s uchetom koeffitsientov akkomodatsii”, Prikl. mekhanika i tekhn. fizika, 45:1 (2004), 23–28 | MR | Zbl

[10] Siewert C. E., Sharipov F., “Model equations in rarefied gas dynemics: viscous-slip and thermalslip coefficiets”, Phys. Fluids, 14:12 (2002), 4123–4129 | DOI | MR

[11] Cercignani C., Lampis M., “Kinetic model for gas-surface interaction”, Transport Theory Stat. Phys., 1 (1971), 101–114 | DOI | MR | Zbl

[12] Zhdanov V. M., Alievskii M. Ya., Protsessy perenosa i relaksatsii v molekulyarnykh gazakh, Nauka, M., 1989 | Zbl

[13] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl

[14] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya perenosa v gazakh, Mir, M., 1976

[15] Bobylev A. V., Tochnye i priblizhennye metody v teorii nelineinykh kineticheskikh uravnenii Boltsmana i Landau, izd. In-ta prikl. matematiki, M., 1987 | MR

[16] Cherchinyani S., “O metodakh resheniya uravneniya Boltsmana”, Neravnovesnye yavleniya: Uravnenie Boltsmana, Mir, M., 1986, 132–204 | MR

[17] Latyshev A. V., Yushkanov A. A., Granichnye zadachi dlya molekulyarnykh gazov, izd. Mosk. gos. obl. un-ta, M., 2005

[18] Akivis M. A., Goldberg V. V., Tenzornoe ischislenie, Nauka, M., 1972 | MR | Zbl

[19] Loyalka S. K., “The $Q_n$ and $F_n$ integrals for the BGK model”, Transport Theory Stat. Phys., 4 (1975), 55–65 | DOI

[20] Popov V. N., “Postanovka granichnykh uslovii na obtekaemykh razrezhennym gazom iskrivlennykh poverkhnostyakh”, Pisma v Zhurn. teor. fiziki, 29:14 (2003), 87–94

[21] Vargaftik N. B., Spravochnik po teploficheskim svoistvam gazov i zhidkostei, Fizmatgiz, M., 1963