Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2010_13_2_a12, author = {S. M. Serebryanskiǐ}, title = {On estimating the errors of approximate solution methods for an inverse problem}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {135--148}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a12/} }
TY - JOUR AU - S. M. Serebryanskiǐ TI - On estimating the errors of approximate solution methods for an inverse problem JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2010 SP - 135 EP - 148 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a12/ LA - ru ID - SJIM_2010_13_2_a12 ER -
S. M. Serebryanskiǐ. On estimating the errors of approximate solution methods for an inverse problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 135-148. http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a12/
[1] Alifanov O. M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988
[2] Tanana V. P., “Ob optimalno sti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matematiki, 7:2 (2004), 117–132 | MR | Zbl
[3] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972
[4] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR