Variational methods for constructing approximate solutions to some problems of continuum mechanics
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 111-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to find approximate solutions to continuum mechanics problems admitting a variational statement we use an approach that is based on restricting the class of functions in which we seek the extremum of the action. We demonstrate the method on some examples of the forced oscillations problem for a nonlinear elastic membrane (a string in particular), the problem of fluid flow through a porous obstacle, and the problem of stationary waves on the surface of a heavy fluid.
Keywords: variational method, approximate solutions.
@article{SJIM_2010_13_2_a10,
     author = {V. I. Nalimov},
     title = {Variational methods for constructing approximate solutions to some problems of continuum mechanics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {111--123},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a10/}
}
TY  - JOUR
AU  - V. I. Nalimov
TI  - Variational methods for constructing approximate solutions to some problems of continuum mechanics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 111
EP  - 123
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a10/
LA  - ru
ID  - SJIM_2010_13_2_a10
ER  - 
%0 Journal Article
%A V. I. Nalimov
%T Variational methods for constructing approximate solutions to some problems of continuum mechanics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 111-123
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a10/
%G ru
%F SJIM_2010_13_2_a10
V. I. Nalimov. Variational methods for constructing approximate solutions to some problems of continuum mechanics. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 111-123. http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a10/

[1] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[2] Ovsyannikov L. V., “Lagranzhevy priblizheniya v teorii voln”, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Novosibirsk, 1988

[3] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[4] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR