Efficient algorithms for solving bank activity optimization problems
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 121-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the two models: the activity of a monopolist bank and the activity of a new bank starting up on the banking services market. Each model involves a multiextremal nonlinear mathematical programming problem. Algorithms for solving these problems rest on those for solving linear programming problems of a special form, for which we give solutions explicitly and count the number of required operations. We prove the existence of a solution for the problem of the activity of a new bank.
Keywords: optimization model, nonlinear programming problem, linear programming problem, effective rate, complexity of solution algorithm, existence theorem for a solution.
@article{SJIM_2010_13_1_a10,
     author = {A. N. Romanovskaya},
     title = {Efficient algorithms for solving bank activity optimization problems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {121--132},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a10/}
}
TY  - JOUR
AU  - A. N. Romanovskaya
TI  - Efficient algorithms for solving bank activity optimization problems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 121
EP  - 132
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a10/
LA  - ru
ID  - SJIM_2010_13_1_a10
ER  - 
%0 Journal Article
%A A. N. Romanovskaya
%T Efficient algorithms for solving bank activity optimization problems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 121-132
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a10/
%G ru
%F SJIM_2010_13_1_a10
A. N. Romanovskaya. Efficient algorithms for solving bank activity optimization problems. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 121-132. http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a10/

[1] Pervozvanskii A. A., Pervozvanskaya T. N., Finansovyi rynok: raschet i risk, INFRA-M, M., 1994

[2] Chetyrkin E. M., Finansovaya matematika, Delo, M., 2003

[3] Ivanov Yu. N., Simunek V., Sotnikova R. A., “Optimalnaya kreditnaya politika predpriyatiya i banka”, Ekonomika i mat. metody, 35:4 (1999), 19–38

[4] Orozbekov N. A., “Nelineinye modeli optimizatsii bankovskikh aktivov”, Sib. zhurn. industr. matematiki, 8:4(24) (2005), 73–90 | MR | Zbl

[5] Ob obyazatelnykh normativakh bankov, Instruktsiya TsB RF ot 16 yanvarya 2004 g.

[6] Antsyz S. M., Orozbekov N. A., Ob odnom podkhode k postroeniyu matematicheskikh modelei dlya optimizatsii bankovskoi deyatelnosti, Preprint No 147, In-t matematiki SO RAN, Novosibirsk, 2004, 26 pp.

[7] Romanovskaya A. N., “Ob odnoi modeli optimizatsii deyatelnosti banka”, Sib. zhurn. industr. matematiki, 11:4(36) (2008), 136–149 | MR

[8] Orozbekov N. A., “Nelineinye modeli optimizatsii bankovskikh aktivov”, Sib. zhurn. industr. matematiki, 8:4(24) (2005), 73–90 | MR | Zbl