Edgeworth equilibrium in a~model of interregional economic relations
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 18-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce an analog of Edgeworth equilibrium for a class of multiregional economic systems. We analyze the game-theoretic aspects of the coalition stability of regional development plans and establish a rather general existence theorem for Edgeworth equilibria. We discuss the questions of coincidence of the set of these equilibria with fuzzy kernel and the set of Walras equilibria of the multiregional systems under study. The methods used rest on systematically accounting for the polyhedrality of the sets of balanced coalition plans of the models under consideration.
Keywords: model of a multiregional system, $k$-partitioning of a model, Edgeworth equilibrium, fuzzy $\mathbb Q$-kernel, Walras equilibrium.
@article{SJIM_2010_13_1_a1,
     author = {V. A. Vasil'ev and V. I. Suslov},
     title = {Edgeworth equilibrium in a~model of interregional economic relations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a1/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
AU  - V. I. Suslov
TI  - Edgeworth equilibrium in a~model of interregional economic relations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 18
EP  - 33
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a1/
LA  - ru
ID  - SJIM_2010_13_1_a1
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%A V. I. Suslov
%T Edgeworth equilibrium in a~model of interregional economic relations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 18-33
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a1/
%G ru
%F SJIM_2010_13_1_a1
V. A. Vasil'ev; V. I. Suslov. Edgeworth equilibrium in a~model of interregional economic relations. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 18-33. http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a1/

[1] Aliprantis K., Braun D., Bërkensho O., Suschestvovanie i optimalnost konkurentnogo ravnovesiya, Mir, M., 1995

[2] Aliprantis C. D., Brown D. J., Burkinshaw O., “Edgeworth equilibria”, Econometrica, 55 (1987), 1109–1137 | DOI | MR | Zbl

[3] Ekland I., Elementy matematicheskoi ekonomiki, Mir, M., 1983 | MR

[4] Vasil'ev V. A., “On Edgeworth equilibria for some types of nonclassic markets”, Siberian Adv. Math., 6 (1996), 96–150 | MR

[5] Rubinshtein A. G., Modelirovanie ekonomicheskikh vzaimodeistvii v territorialnykh sistemakh, Nauka, Novosibirsk, 1983

[6] Suslov V. I., Izmerenie effektov mezhregionalnykh vzaimodeistvii: modeli, metody, rezultaty, Nauka, Novosibirsk, 1991

[7] Granberg A. G., Suslov V. I., Suspitsyn S. A., Mnogoregionalnye sistemy: ekonomiko-matematicheskoe issledovanie, Nauka, Novosibirsk, 2007

[8] Vasilev V. A., Suslov V. I., “O neblokiruemykh sostoyaniyakh mnogoregionalnykh ekonomicheskikh sistem”, Sib. zhurn. industr. matematiki, 12:4(40) (2009), 23–34

[9] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972

[10] Goldman A. Dzh., “Teoremy razlozheniya i otdelimosti dlya mnogogrannykh vypuklykh mnozhestv”, Lineinye neravenstva i smezhnye voprosy, Izd-vo inostr. lit., M., 1959, 162–171

[11] Rokafellar T., Vypuklyi analiz, Mir, M., 1973