On Unblockable States in Multiregional Economic Systems
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 4, pp. 23-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conditions for the existence of unblockable states in a class of models considered in a series of articles on multiregional economic systems. We describe cooperative games associated to these models and reduce some questions of coalition stability of regional development plans to the corresponding problems of game-theoretic analysis. Using the classical Scarf core nonemptiness theorem for cooperative games, we establish sufficiently simple conditions for the existence of unblockable states in the models of interregional economic interaction in question. Important roles in the implementation of our approach belong to the linearity of the models considered and the ensuing polyhedrality of the sets of balanced plans of regional coalitions.
Keywords: model of a multiregional system, unblockable state, cooperative game, balanced game, polyhedral set.
Mots-clés : core
@article{SJIM_2009_12_4_a2,
     author = {V. A. Vasil'ev and V. I. Suslov},
     title = {On {Unblockable} {States} in {Multiregional} {Economic} {Systems}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a2/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
AU  - V. I. Suslov
TI  - On Unblockable States in Multiregional Economic Systems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2009
SP  - 23
EP  - 34
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a2/
LA  - ru
ID  - SJIM_2009_12_4_a2
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%A V. I. Suslov
%T On Unblockable States in Multiregional Economic Systems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2009
%P 23-34
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a2/
%G ru
%F SJIM_2009_12_4_a2
V. A. Vasil'ev; V. I. Suslov. On Unblockable States in Multiregional Economic Systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 4, pp. 23-34. http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a2/

[1] Rubinshtein A. G., Modelirovanie ekonomicheskikh vzaimodeistvii v territorialnykh sistemakh, Nauka, Novosibirsk, 1983

[2] Suslov V. I., Izmerenie effektov mezhregionalnykh vzaimodeistvii: modeli, metody, rezultaty, Nauka, Novosibirsk, 1991

[3] Scarf H., “The core of an $N$ person game”, Econometrica, 35:1 (1967), 50–69 | DOI | MR | Zbl

[4] Granberg A. G., Suslov V. I., Suspitsyn S. A., Mnogoregionalnye sistemy: ekonomiko-matematicheskoe issledovanie, Nauka, Novosibirsk, 2007

[5] Aliprantis K., Braun D., Berkensho O., Suschestvovanie i optimalnost konkurentnogo ravnovesiya, Mir, M., 1995

[6] Vasilev V. A., Modeli ekonomicheskogo obmena i kooperativnye igry, Izd-vo NGU, Novosibirsk, 1984

[7] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972

[8] Bondareva O. N., “Teoriya yadra dlya igry $n$ lits”, Vestnik LGU. Ser. mat., 1962, no. 13, 141–142 | MR | Zbl

[9] Goldman A. Dzh., “Teoremy razlozheniya i otdelimosti dlya mnogogrannykh vypuklykh mnozhestv”, Lineinye neravenstva i smezhnye voprosy, Izd-vo inostr. lit., M., 1959, 162–171

[10] Rokafellar T., Vypuklyi analiz, Mir, M., 1973