On Optimality of the Flat Proportional Tax Rate in a~Two-Level Economic System
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 4, pp. 137-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the functioning of an hierarchical system: the state–an investor (enterprise head)–manufacturing. For the system with various manufacturing functions we simultaneously solve the following two problems. For the investor we solve the consumption-investment problem, and for the state, the problem of increasing the tax collection. We prove a turnpike theorem on the optimal value of the investment part for the lower level of control in the two-level problem with flat proportional taxation. We give examples showing that there exists a situation for which the two-level problem of tax rate optimization has a nontrivial optimal solution.
@article{SJIM_2009_12_4_a12,
     author = {A. E. Trubacheva},
     title = {On {Optimality} of the {Flat} {Proportional} {Tax} {Rate} in {a~Two-Level} {Economic} {System}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {137--151},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a12/}
}
TY  - JOUR
AU  - A. E. Trubacheva
TI  - On Optimality of the Flat Proportional Tax Rate in a~Two-Level Economic System
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2009
SP  - 137
EP  - 151
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a12/
LA  - ru
ID  - SJIM_2009_12_4_a12
ER  - 
%0 Journal Article
%A A. E. Trubacheva
%T On Optimality of the Flat Proportional Tax Rate in a~Two-Level Economic System
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2009
%P 137-151
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a12/
%G ru
%F SJIM_2009_12_4_a12
A. E. Trubacheva. On Optimality of the Flat Proportional Tax Rate in a~Two-Level Economic System. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 4, pp. 137-151. http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a12/

[1] Ben-Ayed O., Blair Ch. E., “Computational difficulties of bilevel linear programming”, Oper. Res., 38 (1990), 556–560 | DOI | MR | Zbl

[2] Laffer A. B., Miles M. A., International Economics in a Integrated World, Glenview, 1982

[3] Laffer A. B., Seymour J. P., The Economics of the Tax Revolt: a Reader, N.Y., 1979

[4] Wanniski J., “Taxes, revenues and the ‘Laffer curve’ ”, Public Interest. Winter, 1978, 3–16

[5] Balatskii E. V., “Invariantnost fiskalnykh tochek Laffera”, Mirovaya ekonomika i mezhdunarodnye otnosheniya, 2003, no. 6, 62–71

[6] Vishnevskii V., Lipnitskii D., “Otsenka vozmozhnostei nalogovogo bremeni v perekhodnoi ekonomike”, Vopr. ekonomiki, 2000, no. 2, 107–116

[7] Volobuev V., “Krivaya Laffera – kontseptsiya i realnosti politiki”, Mirovaya ekonomika i mezhdunarodnye otnosheniya, 1984, no. 11, 119–125

[8] Gusakov S. V., Zhak S. V., “Optimalnye ravnovesnye tseny i tochka Laffera”, Ekonomika i mat. metody, 31:4 (1995), 131–138 | Zbl

[9] Movshovich S. M., Sokolovskii L. E., “Vypusk, nalogi i krivaya Laffera”, Ekonomika i mat. metody, 30:3 (1994), 129–141

[10] Papava V. G., “Lafferov effekt s posledeistviem”, Mirovaya ekonomika i mezhdunarodnye otnosheniya, 2001, no. 7, 34–39

[11] Trubacheva A. E., “O nezavisimosti verkhnego urovnya upravleniya ot formy nalogooblozheniya”, Sib. zhurn. industr. matematiki, 9:3(27) (2006), 139–147 | MR

[12] Trubacheva A. E., Issledovanie povedeniya investora pri razlichnykh skhemakh nalogooblozheniya i raznykh vidakh proizvodstvennoi funktsii, Preprint No 153, In-t matematiki SO RAN, Novosibirsk, 2005, 40 pp.

[13] Trubacheva A. E., Issledovanie dvukh urovnei upravleniya slozhnoi ekonomicheskoi sistemy, Preprint No 168, In-t matematiki SO RAN, Novosibirsk, 2006, 36 pp.

[14] Trubacheva A. E., O suschestvovanii netrivialnogo optimalnogo resheniya v zadache s edinym proportsionalnym nalogom, Preprint No 190, In-t matematiki SO RAN, Novosibirsk, 2007, 20 pp.

[15] Mulen E., Teoriya igr s primerami iz matematicheskoi ekonomiki, Mir, M., 1985 | MR | Zbl

[16] L. S. Pontryagin i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR | Zbl

[17] Gabasov R., Kirillova F. M., Osobye optimalnye upravleniya, Nauka, M., 1973 | MR

[18] Larin R. M., Vvedenie v optimalnoe upravlenie, Ucheb. posobie. Ch. 2, izd. NGU, Novosibirsk, 1988

[19] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[20] Gabasov R., Kirillova F. M., Printsip maksimuma v teorii optimalnogo upravleniya, Nauka i tekhnika, Minsk, 1974 | MR

[21] Ashmanov S. A., Vvedenie v matematicheskuyu ekonomiku, Nauka, M., 1984 | MR | Zbl

[22] Stepanov V. V., Kurs differentsialnykh uravnenii, KomKniga, M., 2006