Stationary Solutions to the Equations of a~Mixture of Compressible Viscous Fluids
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 52-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of renormalized solutions is proved of the first boundary value problem for the equations of stationary motion of a two-component mixture of compressible viscous fluids for all values of the adiabatic exponent in $(3,+\infty)$.
Keywords: boundary value problem, mixture dynamics, solution to Navier–Stokes equations.
@article{SJIM_2009_12_3_a5,
     author = {N. A. Kucher and D. A. Prokudin},
     title = {Stationary {Solutions} to the {Equations} of {a~Mixture} of {Compressible} {Viscous} {Fluids}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {52--65},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a5/}
}
TY  - JOUR
AU  - N. A. Kucher
AU  - D. A. Prokudin
TI  - Stationary Solutions to the Equations of a~Mixture of Compressible Viscous Fluids
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2009
SP  - 52
EP  - 65
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a5/
LA  - ru
ID  - SJIM_2009_12_3_a5
ER  - 
%0 Journal Article
%A N. A. Kucher
%A D. A. Prokudin
%T Stationary Solutions to the Equations of a~Mixture of Compressible Viscous Fluids
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2009
%P 52-65
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a5/
%G ru
%F SJIM_2009_12_3_a5
N. A. Kucher; D. A. Prokudin. Stationary Solutions to the Equations of a~Mixture of Compressible Viscous Fluids. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 52-65. http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a5/

[1] Rajagopal K. R., Tao L., Mechanics of Mixtures, World Scientific, Singapore, 1995 | MR

[2] Haupt P., Continuum Mechanics and Theory of Materials, Springer-Verl., Berlin, 2000 | MR | Zbl

[3] Frehse J., Goj S., Malek J., “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl

[4] Frehse J., Goj S., Malek J., “A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum”, Appl. Math., 50:6 (2005), 527–541 | DOI | MR | Zbl

[5] Goj S., Analysis for mixtures of fluids, Dissertation, Universitat Bonn. Math. Inst., 2005 ; http://bib.math.uni-bonn.de/pdf2/BMS-375.pdf | MR | Zbl

[6] Frehse J., Weigant W., “On quasi-stationary models of mixtures of compressible fluids”, J. Appl. Math., 53:4 (2008), 319–345 | DOI | MR | Zbl

[7] Kazhikhov A. V., Petrov A. N., “Korrektnost nachalno-kraevoi zadachi dlya modelnoi sistemy uravnenii mnogokomponentnoi smesi”, Dinamika sploshnoi sredy, 35, 1978, 61–73 | MR

[8] Zlotnik A. A., “Ravnomernye otsenki i stabilizatsiya reshenii sistemy uravnenii odnomernogo dvizheniya mnogokomponentnoi barotropnoi smesi”, Mat. zametki, 58:2 (1995), 307–312 | MR | Zbl

[9] Feireisl E., Novotny A., Petzeltova H., “On the existence of globally defined weak solutions to the Navier–Stokes equations”, Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl

[10] Plotnikov P. I., Sokolovski Zh., “Statsionarnye resheniya uravnenii Nave–Stoksa dlya dvukhatomnykh gazov”, Uspekhi mat. nauk, 62:3(375) (2007), 117–148 | MR | Zbl

[11] Plotnikov P. I., Sokolowski J., “On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier–Stokes equations”, Math. Fluid Mech., 7 (2005), 529–573 | DOI | MR | Zbl

[12] Plotnikov P. I., Sokolovskii Ya., “Statsionarnye kraevye zadachi dlya uravnenii Nave–Stoksa s pokazatelem adiabaty $\gamma3/2$”, Dokl. RAN, 397:2 (2004), 166–169 | MR

[13] Plotnikov P. I., Sokolowski J., “Concentrations of solutions to time-discretized compressible Navier–Stokes equations”, Comm. Math. Phys., 258 (2005), 567–608 | DOI | MR | Zbl

[14] Bogovskii M. E., “O reshenii nekotorykh zadach vektornogo analiza, svyazannykh s operatorami $\mathrm{div}$ i $\mathrm{grad}$”, Trudy seminara S. L. Soboleva, 1, izd. In-ta matematiki SO AN SSSR, Novosibirsk, 1980, 5–40 | MR

[15] Lions P.-L., Mathematical topics in fluid mechanics. V. 1: Incompressible Models, Oxford Univ. Press, New York, 1996 | MR | Zbl

[16] Lions P.-L., Mathematical topics in fluid mechanics. V. 2: Compressible Models, Oxford Univ. Press, New York, 1998 | MR | Zbl

[17] Solonnikov V. A., “Ob obschikh kraevykh zadachakh dlya sistem ellipticheskikh uravnenii v smysle A. Duglisa–L. Nirenberga. II”, Trudy Mat. in-ta im. V. A. Steklova, 92, 1966, 233–297 | MR | Zbl

[18] Sobolev S. L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989 | MR

[19] Nikolskii S. L., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR