A Superposition of the Nadai and Prandtl Solutions to the Two-Dimensional Ideal Plasticity System
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 151-156
Cet article a éte moissonné depuis la source Math-Net.Ru
We give a general algorithm for transforming exact solutions to the flat ideal plasticity system of Mises using the superposition principle for solutions, which arises as a corollary to the original system admitting an infinite dimensional symmetry group. As an example we consider a relation between the known exact solutions: the Prandtl solution for a thin layer compressed by rough solid plates, and the Nadai solution for the radial distribution of stresses in a convergent channel in the shape of a flat wedge.
Keywords:
flat ideal plasticity, exact solutions to differential equations, boundary value problem for hyperbolic systems.
Mots-clés : superposition principle for solutions
Mots-clés : superposition principle for solutions
@article{SJIM_2009_12_3_a14,
author = {L. V. Yakhno},
title = {A~Superposition of the {Nadai} and {Prandtl} {Solutions} to the {Two-Dimensional} {Ideal} {Plasticity} {System}},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {151--156},
year = {2009},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a14/}
}
TY - JOUR AU - L. V. Yakhno TI - A Superposition of the Nadai and Prandtl Solutions to the Two-Dimensional Ideal Plasticity System JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2009 SP - 151 EP - 156 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a14/ LA - ru ID - SJIM_2009_12_3_a14 ER -
L. V. Yakhno. A Superposition of the Nadai and Prandtl Solutions to the Two-Dimensional Ideal Plasticity System. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 151-156. http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a14/
[1] Kachanov L. M., Osnovy teorii plastichnosti, Nauka, M., 1969
[2] Senashov S. I., Vinogradov A. M., “Symmetries and conservation laws of 2-dimensional ideal plasticity”, Proc. Edinburgh Math. Soc. Ser. II, 3:3 (1988), 415–439 | DOI | MR | Zbl
[3] Hill R., The Mathematical Theory of Plasticity, Calderon Press, Oxford, 1950 | MR
[4] Nadai A., Plastichnost i razrushenie tverdykh tel, Izd-vo inostr. lit., M., 1954
[5] Sokolovskii V. V., Teoriya plastichnosti, Vyssh. shkola, M., 1969