A~Superposition of the Nadai and Prandtl Solutions to the Two-Dimensional Ideal Plasticity System
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 151-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a general algorithm for transforming exact solutions to the flat ideal plasticity system of Mises using the superposition principle for solutions, which arises as a corollary to the original system admitting an infinite dimensional symmetry group. As an example we consider a relation between the known exact solutions: the Prandtl solution for a thin layer compressed by rough solid plates, and the Nadai solution for the radial distribution of stresses in a convergent channel in the shape of a flat wedge.
Keywords: flat ideal plasticity, exact solutions to differential equations, boundary value problem for hyperbolic systems.
Mots-clés : superposition principle for solutions
@article{SJIM_2009_12_3_a14,
     author = {L. V. Yakhno},
     title = {A~Superposition of the {Nadai} and {Prandtl} {Solutions} to the {Two-Dimensional} {Ideal} {Plasticity} {System}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {151--156},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a14/}
}
TY  - JOUR
AU  - L. V. Yakhno
TI  - A~Superposition of the Nadai and Prandtl Solutions to the Two-Dimensional Ideal Plasticity System
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2009
SP  - 151
EP  - 156
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a14/
LA  - ru
ID  - SJIM_2009_12_3_a14
ER  - 
%0 Journal Article
%A L. V. Yakhno
%T A~Superposition of the Nadai and Prandtl Solutions to the Two-Dimensional Ideal Plasticity System
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2009
%P 151-156
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a14/
%G ru
%F SJIM_2009_12_3_a14
L. V. Yakhno. A~Superposition of the Nadai and Prandtl Solutions to the Two-Dimensional Ideal Plasticity System. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 151-156. http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a14/

[1] Kachanov L. M., Osnovy teorii plastichnosti, Nauka, M., 1969

[2] Senashov S. I., Vinogradov A. M., “Symmetries and conservation laws of 2-dimensional ideal plasticity”, Proc. Edinburgh Math. Soc. Ser. II, 3:3 (1988), 415–439 | DOI | MR | Zbl

[3] Hill R., The Mathematical Theory of Plasticity, Calderon Press, Oxford, 1950 | MR

[4] Nadai A., Plastichnost i razrushenie tverdykh tel, Izd-vo inostr. lit., M., 1954

[5] Sokolovskii V. V., Teoriya plastichnosti, Vyssh. shkola, M., 1969