Finite Elements for the Problems of Shock Load and Nonstationary Deformation of the Composite Shells and Plates
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 117-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

To study numerically the problems of shock load and nonstationary deformation, we propose some modified finite elements for the multilayer fibrous laminated composite shells and plates, which account for transversal shears, normal squeezing, rotational inertia, and the viscoelastic behavior of the material. We state the requirements on the finite elements of this type, determine the domain of their use, and make a comparative analysis of the convergence and precision.
Keywords: composite materials, composite shells, plates, shock load, nonstationary deformation, finite elements method.
@article{SJIM_2009_12_3_a11,
     author = {S. I. Snisarenko},
     title = {Finite {Elements} for the {Problems} of {Shock} {Load} and {Nonstationary} {Deformation} of the {Composite} {Shells} and {Plates}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {117--129},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a11/}
}
TY  - JOUR
AU  - S. I. Snisarenko
TI  - Finite Elements for the Problems of Shock Load and Nonstationary Deformation of the Composite Shells and Plates
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2009
SP  - 117
EP  - 129
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a11/
LA  - ru
ID  - SJIM_2009_12_3_a11
ER  - 
%0 Journal Article
%A S. I. Snisarenko
%T Finite Elements for the Problems of Shock Load and Nonstationary Deformation of the Composite Shells and Plates
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2009
%P 117-129
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a11/
%G ru
%F SJIM_2009_12_3_a11
S. I. Snisarenko. Finite Elements for the Problems of Shock Load and Nonstationary Deformation of the Composite Shells and Plates. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 117-129. http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a11/

[1] Golovanov A. I., Tyuleneva O. N., Shigabutdinov A. F., Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii, Fizmatlit, M., 2006

[2] Korobeinikov S. N., Nelineinoe deformirovanie tverdykh tel, Izd-vo SO RAN, Novosibirsk, 2000

[3] Korobeinikov S. N., Khudyakov Yu. S., Shutov A. V., “Matematicheskoe modelirovanie khrupkogo razrusheniya tonkikh tel”, Vychisl. metody i programmirovanie, 3, 2002, 187–210

[4] Hrobok M. M., Hrudey T. M., “A review and catalogue of plate bending finite elements”, Computers and Structures, 19:3 (1984), 479–495 | DOI

[5] Golovanov A. I., “Konechnye elementy tonkikh nepologikh obolochek. Klassifikatsiya i osnovnye trebovaniya”, Prikladnye problemy prochnosti i plastichnosti. Chislennoe modelirovanie fiziko-mekhanicheskikh protsessov, 49, 1990, 89–96

[6] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975

[7] Lekhnitskii S. G., Anizotropnye plastinki, Gostekhizdat, M., 1957

[8] Ambartsumyan S. A., Obschaya teoriya anizotropnykh obolochek, Nauka, M., 1974 | MR

[9] Bolotin V. V., Novichkov Yu. N., Mekhanika mnogosloinykh konstruktsii, Mashinostroenie, M., 1980

[10] Malmeister A. K., Tamuzh V. P., Teters G. A., Soprotivlenie polimernykh i kompozitnykh materialov, Zinatne, Riga, 1980

[11] Novozhilov V. V., Slepyan L. I., “O printsipe Sen-Venana v dinamike sterzhnei”, Prikl. matematika i mekhanika, 29:2 (1965), 261–281 | MR | Zbl

[12] Rikards R. B., Chate A. K., “Izoparametricheskii treugolnyi konechnyi element mnogosloinoi obolochki po sdvigovoi modeli Timoshenko. 1. Matritsy zhestkosti, mass i geometricheskoi zhestkosti elementa”, Mekhanika kompozitnykh materialov, 1981, no. 3, 453–460

[13] Rikards R. B., Chate A. K., “Izoparametricheskii treugolnyi konechnyi element mnogosloinoi obolochki po sdvigovoi modeli Timoshenko. 2. Chislennye primery”, Mekhanika kompozitnykh materialov, 1981, no. 5, 815–820

[14] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Kazan. gos. un-t, Kazan, 1975 | MR

[15] Snisarenko S. I., “Kinematicheskie sootnosheniya dlya konechnoelementnogo analiza nestatsionarnogo deformirovaniya kompozitnykh konstruktsii”, Nauch. vestn. NGTU, 2007, no. 1(26), 151–160

[16] Rastorguev G. I., Snisarenko S. I., “Fizicheskie sootnosheniya dlya zadach udarnogo nagruzheniya i nestatsionarnogo deformirovaniya kompozitnykh konstruktsii”, Prikl. mekhanika i tekhn. fizika, 50:1 (2009), 187–196

[17] Bryukker L. E., “Nekotorye varianty uproscheniya uravnenii izgiba trekhsloinykh plastin”, Raschety elementov aviatsionnykh konstruktsii, 3, Mashinostroenie, M., 1965, 74–99

[18] Pagano H., Khetfild S., “Uprugoe povedenie mnogosloinogo dvunapravlennogo kompozitsionnogo materiala”, Raketnaya tekhnika i kosmonavtika, 10:7 (1972), 98–101

[19] Kulagin S. V., “Raschet sloistykh kompozitnykh obolochek MKE”, Problemy dinamiki i prochnosti mashinostroitelnykh konstruktsii, izd. Kazan. nauch. tsentra AN SSSR, Kazan, 1990, 68–83

[20] Panda S., Natarajan R., “Finite element analysis of laminated composite plates”, Internat. J. Numer. Methods Engrg., 14:1 (1979), 69–79 | DOI | MR | Zbl