An Approximate Solution to the Integral Equations with Kernels of the Form $K(x-t)$ Which Uses a~Nonstandard Basis of Trigonometric Functions
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 110-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the integral equations with kernels of the form $K(x-t)$. In order to find an approximate solution by the Galerkin method, we propose a nonstandard trigonometric basis. This basis possesses a high approximation quality and enables us to reduce the double integral in the Galerkin algorithm to quite simple single integration.
Keywords: Fredholm and Volterra equations, Galerkin method, nonstandard trigonometric basis.
@article{SJIM_2009_12_3_a10,
     author = {V. V. Smelov},
     title = {An {Approximate} {Solution} to the {Integral} {Equations} with {Kernels} of the {Form} $K(x-t)$ {Which} {Uses} {a~Nonstandard} {Basis} of {Trigonometric} {Functions}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {110--116},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a10/}
}
TY  - JOUR
AU  - V. V. Smelov
TI  - An Approximate Solution to the Integral Equations with Kernels of the Form $K(x-t)$ Which Uses a~Nonstandard Basis of Trigonometric Functions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2009
SP  - 110
EP  - 116
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a10/
LA  - ru
ID  - SJIM_2009_12_3_a10
ER  - 
%0 Journal Article
%A V. V. Smelov
%T An Approximate Solution to the Integral Equations with Kernels of the Form $K(x-t)$ Which Uses a~Nonstandard Basis of Trigonometric Functions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2009
%P 110-116
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a10/
%G ru
%F SJIM_2009_12_3_a10
V. V. Smelov. An Approximate Solution to the Integral Equations with Kernels of the Form $K(x-t)$ Which Uses a~Nonstandard Basis of Trigonometric Functions. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 110-116. http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a10/

[1] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[2] Maslennikov M. V., Problema Milna s anizotropnym rasseyaniem, Tr. Mat. in-ta im. V. A. Steklova, 97, M., 1968 | MR

[3] Smelov V. V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978 | MR

[4] Chandrasekar S., Perenos luchistoi energii, Izd-vo inostr. lit., M., 1953

[5] Smirnov V. I., Kurs vysshei matematiki, T. 4, Gostekhizdat, M.–L., 1951

[6] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[7] Smelov V. V., Zadachi Shturma–Liuvillya i razlozheniya funktsii v bystroskhodyaschiesya ryady, Izd-vo SO RAN, Novosibirsk, 2000

[8] Smelov V. V., “O predstavlenii kusochno-gladkikh funktsii bystroskhodyaschimisya trigonometricheskimi ryadami”, Sib. zhurn. vychisl. matematiki, 2:4 (1999), 385–394 | Zbl