Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2009_12_3_a10, author = {V. V. Smelov}, title = {An {Approximate} {Solution} to the {Integral} {Equations} with {Kernels} of the {Form} $K(x-t)$ {Which} {Uses} {a~Nonstandard} {Basis} of {Trigonometric} {Functions}}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {110--116}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a10/} }
TY - JOUR AU - V. V. Smelov TI - An Approximate Solution to the Integral Equations with Kernels of the Form $K(x-t)$ Which Uses a~Nonstandard Basis of Trigonometric Functions JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2009 SP - 110 EP - 116 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a10/ LA - ru ID - SJIM_2009_12_3_a10 ER -
%0 Journal Article %A V. V. Smelov %T An Approximate Solution to the Integral Equations with Kernels of the Form $K(x-t)$ Which Uses a~Nonstandard Basis of Trigonometric Functions %J Sibirskij žurnal industrialʹnoj matematiki %D 2009 %P 110-116 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a10/ %G ru %F SJIM_2009_12_3_a10
V. V. Smelov. An Approximate Solution to the Integral Equations with Kernels of the Form $K(x-t)$ Which Uses a~Nonstandard Basis of Trigonometric Functions. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 110-116. http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a10/
[1] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR
[2] Maslennikov M. V., Problema Milna s anizotropnym rasseyaniem, Tr. Mat. in-ta im. V. A. Steklova, 97, M., 1968 | MR
[3] Smelov V. V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978 | MR
[4] Chandrasekar S., Perenos luchistoi energii, Izd-vo inostr. lit., M., 1953
[5] Smirnov V. I., Kurs vysshei matematiki, T. 4, Gostekhizdat, M.–L., 1951
[6] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[7] Smelov V. V., Zadachi Shturma–Liuvillya i razlozheniya funktsii v bystroskhodyaschiesya ryady, Izd-vo SO RAN, Novosibirsk, 2000
[8] Smelov V. V., “O predstavlenii kusochno-gladkikh funktsii bystroskhodyaschimisya trigonometricheskimi ryadami”, Sib. zhurn. vychisl. matematiki, 2:4 (1999), 385–394 | Zbl