A~Transversally Isotropic Elastic Model of Geomaterials
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the choice of parameters in a transversally isotropic elastic model describing linear deformation of the geomaterials, as well as the analytical and numerical methods for solving the corresponding dynamic equations.
Keywords: linear elasticity, transversally isotropic medium, Gassman condition, Friedrichs $t$-hyperbolicity.
Mots-clés : Lamé equations
@article{SJIM_2009_12_3_a1,
     author = {B. D. Annin},
     title = {A~Transversally {Isotropic} {Elastic} {Model} of {Geomaterials}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a1/}
}
TY  - JOUR
AU  - B. D. Annin
TI  - A~Transversally Isotropic Elastic Model of Geomaterials
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2009
SP  - 5
EP  - 14
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a1/
LA  - ru
ID  - SJIM_2009_12_3_a1
ER  - 
%0 Journal Article
%A B. D. Annin
%T A~Transversally Isotropic Elastic Model of Geomaterials
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2009
%P 5-14
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a1/
%G ru
%F SJIM_2009_12_3_a1
B. D. Annin. A~Transversally Isotropic Elastic Model of Geomaterials. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 5-14. http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a1/

[1] Annin B. D., Ostrosablin N. I., “Anizotropiya uprugikh svoistv materialov”, Prikl. mekhanika i tekhn. fizika, 49:6 (2008), 131–151 | MR

[2] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977 | MR

[3] Batugin S. A., Nirenburg R. K., “Priblizhennaya zavisimost mezhdu uprugimi konstantami gornykh porod i parametry anizotropii”, Fiz.-tekhn. problemy razrabotki polez. iskopaemykh, 7:1 (1972), 7–12

[4] Klimov D. M., Karev V. I., Kovalenko Yu. F., Ustinov K. B., Matematicheskoe i fizicheskoe modelirovanie ustoichivosti naklonnykh i gorizontalnykh skvazhin v anizotropnykh porodakh, Preprint No 879, In-t problem mekhaniki RAN, M., 2008, 32 pp.

[5] Gassmann F., “Introduction to seismic travel time methods in anisotropicmedia”, Pure Appl. Geophysics, 58:1 (1964), 63–112 | DOI

[6] Goldin S. V., Seismicheskie volny v anizotropnykh sredakh, Izd-vo SO RAN, Novosibirsk, 2008

[7] Backus G. E., “Long-wave elastic anisotropy produced by horizontal layering”, J. Geophys. Res., 67:11 (1962), 4427–4440 | DOI

[8] Molotkov L. A., Issledovanie rasprostraneniya voln v poristykh i treschinovatykh sredakh na osnove effektivnykh modelei Bio i sloistykh sred, Nauka, SPb., 2001

[9] Baryakh A. A., Asanov V. A., Pankov I. L., Fiziko-mekhanicheskie svoistva solyanykh porod Verkhnekamskogo kaliinogo mestorozhdeniya, Izd-vo Perm. gos. tekhn. un-ta, Perm, 2008

[10] Burridge R., Chadwick P., Norris A. N., “Fundamental elastodynamic solution for anisotropic media with ellipsoidal slowness surface”, Proc. Roy. Soc. London. Ser. A, 440:1910 (1993), 655–681 | DOI | MR | Zbl

[11] Ostrosablin N. I., “Obschie resheniya i privedenie sistemy uravnenii lineinoi teorii uprugosti k diagonalnomu vidu”, Prikl. mekhanika i tekhn. fizika, 34:5 (1993), 112–12 | MR

[12] Green A. E., Zerna W., Theoretical Elasticity, Clarendon Press, Oxford, 1968 | MR | Zbl

[13] Annin B. D., “Modeli uprugoplasticheskogo deformirovaniya transversalno-izotropnykh materialov”, Sib. zhurn. industr. matematiki, 2:2(4) (1999), 3–7 | Zbl

[14] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1978 | MR

[15] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR